

Blazor WebAssembly
by Example

A project-based guide to building web apps with
.NET, Blazor WebAssembly, and C#

Toi B. Wright

BIRMINGHAM—MUMBAI

Blazor WebAssembly by Example
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the author, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly by
this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Senior Editor: Keagan Carneiro
Content Development Editor: Adrija Mitra
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Production Designer: Vijay Kamble

First published: June 2021

Production reference: 1040621

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80056-751-1

www.packt.com

http://www.packt.com

To my boys, for their never-ending patience and understanding. To my
readers, for their ceaseless curiosity about new technologies.

– Toi B. Wright

Foreword
Hi, friends! I've known Toi Wright for more than 15 years. I first met her at the Microsoft
MVP Summit in Redmond back in 2005, if you can believe that. She's a brilliant
technologist, community leader, and tech organizer, and we see each other every year at
the annual Microsoft MVP Summit. I've had the opportunity to travel from my home in
Portland to beautiful Dallas to speak to her in person at the Dallas ASP.NET User Group,
of which she's the founder and organizer.

Toi has been very active in the ASP.NET community for many years. She has written
courseware for Microsoft on ASP.NET and this is her second book on the topic. She's
a respected programmer, architect, and communicator.

In this book, she walks you step by step through the creation of a number of standalone
projects that are built on the Blazor WebAssembly framework. You'll learn how to leverage
your experience with the .NET ecosystem to complete many different types of projects.
Blazor takes .NET and your .NET skills to the web in a new way, and this book is the key
to enabling that.

In Blazor WebAssembly by Example, Toi has shared her extensive knowledge and years
of experience as a web developer and created an easy-to-follow guide for you to quickly
learn how to use the Blazor WebAssembly framework. Through her words, step-by-step
instructions, copious screenshots, and code samples, you will get started with running
C# in your browser instead of JavaScript. Everything she'll show you, including .NET and
Blazor itself, is all open source and based on open standards! I'm so glad that we both have
a partner in Toi Wright to guide us in this powerful new web framework!

Scott Hanselman – hanselman.com

Partner Program Manager at Microsoft

Contributors

About the author
Toi B. Wright has been obsessed with ASP.NET for almost 20 years. She is the founder
and president of the Dallas ASP.NET User Group. She has been a Microsoft MVP in ASP.
NET for 16 years and is also an ASPInsider. She is an experienced full-stack software
developer, book author, courseware author, speaker, and community leader with over
25 years of experience. She has a B.S. in computer science and engineering from the
Massachusetts Institute of Technology (MIT) and an MBA from Carnegie Mellon
University (CMU).

You can find her on Twitter at @misstoi.

I would like to thank my husband and my two sons for their continued
support, patience, and encouragement throughout the protracted process of

writing this book.

About the reviewer
Jürgen Gutsch is a .NET-addicted web developer. He has been working with .NET
and ASP.NET since the early versions in 2002. Before that, he wrote server-side web
applications using classic ASP. He is also an active person in the .NET developer
community. Jürgen writes for the dotnetPro Magazine, one of the most popular German-
speaking developer magazines. He also publishes articles in English on his blog, ASP.NET
Hacker, and contributes to several open source projects. Jürgen has been a Microsoft MVP
since 2015.

The best way to contact him is using Twitter: @sharpcms.

He works as a developer, consultant, and trainer for the digital agency YOO Inc., located
in Basel, Switzerland. YOO Inc. serves national as well as international clients and
specializes in creating custom digital solutions for distinct business needs.

Table of Contents

Preface

1
Introduction to Blazor WebAssembly

Benefits of using the Blazor
framework� 2
.NET Framework� 2
SPA framework� 2
Razor syntax� 3
Awesome tooling� 3

Hosting models� 3
Blazor Server� 4
Blazor WebAssembly� 5

What is WebAssembly?� 7
WebAssembly goals� 8

WebAssembly support� 8

Setting up your PC� 9
Installing Visual Studio
Community Edition� 10
Installing .NET 5.0� 11
Installing SQL Server Express� 11

Summary� 14
Questions� 14
Further reading� 14

2
Building Your First Blazor WebAssembly Application

Technical requirements� 18
Razor components� 18
Using components� 18
Parameters� 19
Naming components� 19
Component life cycle� 20
Component structure� 20

Routing in Blazor WebAssembly� 22

Route parameters� 23
Catch-all route parameters� 24
Route constraints� 24

Razor syntax� 25
Inline expressions� 25
Control structures� 26

Project overview� 29

ii Table of Contents

Creating the Demo Blazor
WebAssembly project� 30
Creating the Demo project� 30
Running the Demo project � 32
Examining the Demo
project's structure� 34
Examining the shared
Razor components� 37
Examining the routable Razor
components� 40
Using a component� 44
Adding a parameter to a component� 45
Using a parameter with an attribute� 46

Adding a route parameter� 47
Using partial classes to separate
markup from code� 48

Creating a custom Blazor
WebAssembly project template� 49
Creating an empty Blazor project� 50
Creating a project template� 51
Updating a custom project template� 53
Using a custom project template� 54

Summary� 55
Questions � 56
Further reading� 56

3
Building a Modal Dialog Using Templated Components

Technical requirements� 58
RenderFragment parameters� 58
EventCallback parameters� 61
CSS isolation� 63
Enabling CSS isolation� 63
Supporting child components� 65

Project overview� 65
Creating the modal
dialog project� 66
Getting started with the project� 66
Adding the Dialog component� 67

Adding a CSS� 68
Testing the Dialog component� 70
Adding EventCallback parameters� 71
Adding RenderFragment parameters� 73
Creating a Razor class library� 75
Testing the Razor class library� 76
Adding a component to
the Razor class library� 77

Summary� 78
Questions� 78
Further reading� 79

4
Building a Local Storage Service Using JavaScript
Interoperability (JS Interop)

Technical requirements� 82
Why use JavaScript?� 82
Exploring JS interop� 83

InvokeVoidAsync� 84
InvokeAsync� 86
Invoking JavaScript from .NET

Table of Contents iii

synchronously� 88
Invoking .NET from JavaScript� 89

Understanding local storage� 93
Project overview� 94
Creating the local
storage service� 95
Creating the local storage
service project� 95

Writing JavaScript to access
localStorage� 97
Adding the ILocalStorageService
interface� 98
Creating the LocalStorageService class� 98
Writing to localStorage� 100
Reading from localStorage� 102

Summary� 103
Questions� 103
Further reading� 104

5
Building a Weather App as a Progressive Web App (PWA)

Technical requirements� 106
Understanding PWAs� 107
HTTPS� 107
Manifest files� 107
Service workers� 108

Working with manifest files� 108
Working with service workers� 111
Service worker life cycle� 111
Updating a service worker� 112
Types of service workers� 113

Using the CacheStorage API� 115
Using the Geolocation API� 116
Using the OpenWeather One
Call API� 118
Project overview� 120
Creating a PWA� 121

Getting started with the project� 121
Adding a JavaScript function� 122
Using the Geolocation API� 124
Adding a Forecast class� 128
Adding a DailyForecast component� 129
Using the OpenWeather One Call API� 130
Displaying the forecast� 132
Adding the logo� 133
Adding a manifest file� 133
Adding a simple service worker� 134
Testing the service worker� 137
Installing the PWA� 141
Uninstalling the PWA� 142

Summary� 143
Questions� 144
Further reading� 144

6
Building a Shopping Cart Using Application State

Technical requirements� 146
Application state� 146

Understanding DI� 146
DI container� 147

iv Table of Contents

Service lifetime� 147

Project overview� 148
Creating the shopping cart
project� 149
Getting started with the project� 150
Adding the Product class� 151
Adding the Store page� 153
Demonstrating that application state
is lost� 157
Creating the ICartService interface� 157

Creating the CartService class� 158
Registering CartService in the DI
container� 159
Injecting CartService� 160
Adding the cart total to
all of the pages� 161
Using the OnChange method� 162

Summary� 163
Questions� 164
Further reading� 164

7
Building a Kanban Board Using Events

Technical requirements� 166
Event handling� 166
Lambda expressions� 168
Preventing default actions� 168

Attribute splatting� 169
Arbitrary parameters� 171
Project overview� 173
Creating the Kanban
board project� 173

Getting started with the project� 173
Adding the classes� 175
Creating the Dropzone component� 176
Adding a style sheet� 178
Creating the Kanban board� 179
Creating the NewTask component� 181
Using the NewTask component� 183

Summary� 184
Questions� 184
Further reading� 185

8
Building a Task Manager Using ASP.NET Web API

Technical requirements� 188
Understanding hosted
applications� 188
Client project� 189
Server project� 189
Shared project� 189

Using the HttpClient service� 190
Using JSON helper methods� 191

GetFromJsonAsync� 191
PostAsJsonAsync� 192
PutAsJsonAsync� 192
HttpClient.DeleteAsync� 193

Project overview� 194
Creating the TaskManager
project� 194
Getting started with the project� 194

Table of Contents v

Examining the hosted Blazor
WebAssembly app� 196
Emptying the solution� 197
Adding the TaskItem class� 197
Adding the TaskItem API controller� 198
Setting up SQL Server� 200
Displaying the tasks� 202

Completing the tasks� 204
Deleting the tasks� 206
Adding new tasks� 207

Summary� 209
Questions� 210
Further reading� 210

9
Building an Expense Tracker Using the EditForm Component

Technical requirements� 212
Overview of the EditForm
component� 212
Using the built-in input
components� 213
Using the validation
components� 214
Project overview� 216
Creating the ExpenseTracker
project� 217
Getting started with the project� 217

Removing the demo project� 219
Adding the classes� 219
Adding the API controllers� 221
Creating the SQL Server database� 223
Viewing the expenses� 224
Adding the ExpenseEdit component� 227
Adding the input components � 230

Summary� 233
Questions� 233
Further reading� 234
Why subscribe?� 235

Other Books You May Enjoy
Index

Preface
Blazor WebAssembly is a framework, built on the popular and robust ASP.NET
framework, that allows you to build single-page web applications that use C# on the client
instead of JavaScript. Blazor WebAssembly does not rely on plugins or add-ons. It only
requires that the browser support WebAssembly – and all modern browsers support it.

In this book, you will complete practical projects that will teach you the fundamentals
of the Blazor WebAssembly framework. Each chapter includes a standalone project with
detailed step-by-step instructions. Each project is designed to highlight one or more
important concepts concerning Blazor WebAssembly. By the end of the book, you will
have experience with building both simple standalone web applications and hosted web
applications with SQL Server backends.

Who this book is for
This book is for experienced web developers who are tired of constantly learning the latest
new JavaScript framework and want to leverage their experience with .NET and C# to
build web applications that can run anywhere.

This book is for anyone who wants to learn Blazor WebAssembly quickly by emphasizing
the practical over the theoretical. It uses complete, step-by-step sample projects that are
easy to follow to teach you the concepts required to develop web apps using the Blazor
WebAssembly framework.

You do not need to be a professional developer to benefit from the projects in this book,
but you do need some experience with C# and HTML.

What this book covers
Chapter 1, Introduction to Blazor WebAssembly, provides an introduction to the Blazor
WebAssembly framework. It explains the benefits of using the Blazor framework and
describes the differences between the two hosting models: Blazor Server and Blazor
WebAssembly. After highlighting the advantages of using the Blazor WebAssembly
framework, the goals and support options for WebAssembly are discussed. Finally,
it guides you through the process of setting up your computer to complete the projects
in this book. By the end of this chapter, you will be able to proceed to any of the other
chapters in this book.

viii Preface

Chapter 2, Building Your First Blazor WebAssembly Application, provides an introduction
to Razor components through the creation of a simple project. This chapter is divided into
three sections. The first section explains Razor components, routing, and Razor syntax.
The second section walks you step by step through the process of creating your first
Blazor WebAssembly application by using the Blazor WebAssembly App project template
provided by Microsoft. The final section walks you step by step through the process of
creating your own custom Blazor WebAssembly project template. The projects in Chapters
3-7 will use this custom project template. By the end of this chapter, you will be able to
create an empty Blazor WebAssembly project.

Chapter 3, Building a Modal Dialog Using Templated Components, provides an
introduction to templated components through the creation of a modal dialog
component. This chapter is divided into three sections. The first section explains
RenderFragment parameters, EventCallback parameters, and CSS isolation. The
second section walks you step by step through the process of creating a modal dialog
component. The final section walks you step by step through the process of creating your
own Razor class library and moving the modal dialog component to it. By the end of this
chapter, you will be able to create a modal dialog component and share it with multiple
projects through a Razor class library.

Chapter 4, Building a Local Storage Service Using JavaScript Interoperability (JS Interop),
provides an introduction to using JavaScript with Blazor WebAssembly through the
creation of a local storage service. This chapter is divided into two sections. The first
section explains the reasons that you still need to occasionally use JavaScript and how to
invoke a JavaScript function from .NET. For completeness, it also covers how to invoke
a .NET method from JavaScript. Finally, it introduces the Web Storage API that is used
by the project. In the last section, it walks you step by step through the process of creating
and testing a service that writes and reads to the local storage of the browser. By the end of
this chapter, you will be able to create a local storage service by using JS Interop to invoke
JavaScript functions from a Blazor WebAssembly application.

Chapter 5, Building a Weather App as a Progressive Web App (PWA), provides an
introduction to progressive web apps through the creation of a simple weather web
app. This chapter is divided into two sections. The first section explains what a PWA is
and how to create one. It covers both manifest files and service workers. Also, it describes
how to use the CacheStorage API, the Geolocation API, and the OpenWeather One Call
API, which are required by the project in this chapter. The second section walks you step
by step through the process of creating a 5-day weather forecast app and converting it into
a PWA by adding a logo, a manifest file, and a service worker. Finally, it shows you how to
install and uninstall the PWA. By the end of this chapter, you will be able to convert
a Blazor WebAssembly app into a PWA by adding a logo, a manifest file, and a service
worker.

What this book covers ix

Chapter 6, Building a Shopping Cart Using Application State, provides an introduction
to application state through the creation of a shopping cart web app. This chapter is
divided into two sections. The first section explains application state and Dependency
Injection (DI). The last section walks you step by step through the process of creating
a shopping cart application. To maintain state in your application, you will create a service
that you will register in the DI container and inject into your components. By the end
of this chapter, you will be able to use DI to maintain application state within a Blazor
WebAssembly app.

Chapter 7, Building a Kanban Board Using Events, provides an introduction to event
handling through the creation of a Kanban board web app. This chapter is divided
into two sections. The first section discusses event handling, arbitrary parameters, and
attribute splatting. The last section walks you step by step through the process of creating
a Kanban board application that uses the DragEventArgs class to enable you to drag
and drop tasks between the dropzones. By the end of this chapter, you will be able to
handle events in your Blazor WebAssembly app and will be comfortable using both
attribute splatting and arbitrary parameters.

Chapter 8, Building a Task Manager Using ASP.NET Web API, provides an introduction
to hosted Blazor WebAssembly applications through the creation of a task manager web
app. This is the first chapter to use SQL Server. It is divided into two sections. The first
section describes the components of a hosted Blazor WebAssembly application. It also
explains how to use the HttpClient service and the various JSON helper methods to
manipulate data. The last section walks you step by step through the process of creating
a task manager application that stores its data in a SQL Server database. You will create an
API controller with actions, using Entity Framework. By the end of this chapter, you will
be able to create a hosted Blazor WebAssembly app that uses the ASP.NET Web API to
update data in a SQL Server database.

Chapter 9, Building an Expense Tracker Using the EditForm Component, provides an
introduction to the EditForm component through the creation of an expense tracker
web app. This chapter uses SQL Server. It is divided into two sections. The first section
introduces the EditForm component, the built-in input components, and the built-in
validation components. The last section walks you step by step through the process of
creating an expense tracker application that uses the EditForm component and some
of the built-in components to add and edit the expenses that are stored in a SQL Server
database. By the end of this chapter, you will be able to use the EditForm component
in conjunction with the built-in components to input and validate data that is stored in
a SQL Server database.

x Preface

To get the most out of this book
We recommend that you read the first two chapters of the book to understand how to set
up your computer and how to use the empty Blazor WebAssembly project template. After
that, you can complete the remaining chapters in any order. The projects in each chapter
become more complex as you proceed through the book. The final two chapters require
a SQL Server database in order to complete the project.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing
so will help you avoid any potential errors related to the copying and pasting of code.

This book assumes that you are an experienced web developer. You should have some
experience with C# and HTML. Also, all of the projects use Bootstrap 4 as the CSS
framework. If you have never used Bootstrap 4, we recommend that you familiarize
yourself with it before proceeding, at https://getbootstrap.com/docs/4.6/
getting-started/introduction.

There are some projects that use JavaScript and CSS, and two projects that use Entity
Framework, but all the code is provided in the book.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Blazor-WebAssembly-by-Example. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
Code in Action videos for this book can be viewed at (https://bit.ly/3f1rJ0R).

https://getbootstrap.com/docs/4.6/getting-started/introduction
https://getbootstrap.com/docs/4.6/getting-started/introduction
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example
https://github.com/PacktPublishing/
https://bit.ly/3f1rJ0R

Download the color images xi

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781800567511_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Add the DeleteProduct method to the @code block."

A block of code is set as follows:

private void DeleteProduct(Product product)

{

 cart.Remove(product);

 total -= product.Price;

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

public class CartService : ICartService

{

 public IList<Product> Cart { get; private set; }

 public int Total { get; set; }

 public event Action OnChange;

}

Any command-line input or output is written as follows:

Add-Migration Init

Update-Database

https://static.packt-cdn.com/downloads/9781800567511_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781800567511_ColorImages.pdf

xii Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"From the Build menu, select the Build Solution option."

Tips or important notes	
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your
book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about
our products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1
Introduction to

Blazor WebAssembly
Blazor WebAssembly is Microsoft's new single-page application (SPA) framework for
building web applications on .NET Framework. It enables developers to run C# code on
the client. Therefore, instead of being forced to use JavaScript on the browser, we can now
use C# on the browser.

In this chapter, we will prepare you to develop web applications using Blazor
WebAssembly. We will discuss the two different Blazor hosting models and present the
advantages of using Blazor WebAssembly over Blazor Server. Finally, we will guide you
through the process of setting up your computer to complete the projects in this book.

In this chapter, we will cover the following topics:

•	 Benefits of using the Blazor framework

•	 Differences between the two hosting models

•	 What is WebAssembly?

•	 Setting up your PC

2 Introduction to Blazor WebAssembly

Benefits of using the Blazor framework
Using the Blazor framework has several benefits. For starters, it is a free and open source
framework built on Microsoft's robust .NET Framework. Also, it is an SPA framework that
uses Razor syntax and can be developed using Microsoft's exceptional tooling.

.NET Framework
Blazor is built on .NET Framework. Since Blazor is built on .NET Framework, anyone
familiar with .NET Framework can quickly become productive using the Blazor
framework. The Blazor framework leverages the robust ecosystem of .NET libraries and
NuGet packages from .NET Framework. Also, since both client and server code are
written in C#, they can share code and libraries, such as the application logic used for data
validation.

Blazor is open source. Since Blazor is a feature of the ASP.NET framework, all of the
source code for Blazor is available on GitHub as part of the dotnet/aspnetcore
repository that is owned by the .NET Foundation. .NET Foundation is an independent,
non-profit organization established to support the innovative, commercially friendly, open
source ecosystem around the .NET platform. The .NET platform has a strong community
of over 100,000 contributions from more than 3,700 companies.

Blazor is free. Since .NET Framework is free, this means that Blazor is also free. There are
no fees or licensing costs associated with using Blazor, including for commercial uses.

SPA framework
The Blazor framework is an SPA framework. As the name implies, an SPA is a web
app that consists of a single page. The application dynamically rewrites the single page
instead of loading an entirely new page in response to each UI update. The goal is faster
transitions that make the web app feel more like a native app.

When a page is rendered, Blazor creates a render tree that is a graph of the components
on the page. It is similar to the Document Object Model (DOM) created by the browser.
However, it is a virtual DOM. Updates to the UI are applied to the virtual DOM and only
the differences between the DOM and the virtual DOM are updated by the browser.

Hosting models 3

Razor syntax
The name of the Blazor framework has an interesting origin story. The term Blazor is
a combination of the word browser and the word razor. Razor is the ASP.NET view
engine used to create dynamic web pages with C#. Razor is a syntax for combining HTML
markup with C# code that was designed for developer productivity. It allows the developer
to use both HTML markup and C# in the same file.

Blazor web apps are built using Razor Components. Razor Components are reusable
UI elements that contain C# code, markup, and other Razor Components. Razor
Components are quite literally the building blocks of the Blazor framework. For more
information on Razor Components, refer to Chapter 2, Building Your First Blazor
WebAssembly Application.

Important note
Razor Pages and MVC also use the Razor syntax. Unlike Razor Pages and
MVC, which render the whole page, Razor Components only render the DOM
changes. One way to easily distinguish between them is that Razor components
use the RAZOR file extension, while Razor Pages use the CSHTML file
extension.

Awesome tooling
You can use either Microsoft Visual Studio or Microsoft Visual Studio Code to develop
Blazor WebAssembly applications. Microsoft Visual Studio is an integrated development
environment (IDE), while Microsoft Visual Code is a lightweight, yet powerful, editor.
They are both incredible tools for building enterprise applications. Also, they are both
available for free and there are versions that run on Windows, Linux, and macOS.

There are many benefits associated with using the Blazor framework to develop web apps.
Since it is built on the mature .NET Framework, it enables developers to use the skills,
such as C#, and the tools, such as Visual Studio, that they have already mastered. Also,
since it is an SPA framework, Blazor web apps feel like native apps.

Hosting models
Blazor has two different hosting models. The first hosting model that Microsoft
released is the Blazor Server model. In this hosting model, the web app is executed
on the server. The second hosting model that Microsoft released, and the topic of this
book, is the Blazor WebAssembly model. In this hosting model, the web app is executed
on the browser.

4 Introduction to Blazor WebAssembly

Each hosting model has its own advantages and disadvantages. However, they both use
the same underlying architecture. Therefore, it is possible to write and test your code
independent of the hosting model. The major differences between the two hosting models
concern latency, security, data access, and offline support.

Blazor Server
As we just mentioned, the Blazor Server hosting model was the first hosting
model released by Microsoft. It was released as part of the .NET Core 3 release
in September 2019.

The following diagram illustrates the Blazor Server hosting model:

Figure 1.1 – Blazor Server

In this hosting model, the web app is executed on the server and only updates to the
UI are sent to the client's browser. The browser is treated as a thin client and all of the
processing occurs on the server. When using Blazor Server, UI updates, event handling,
and JavaScript calls are all handled over an ASP.NET Core SignalR connection.

Important note
SignalR is a software library that allows the web server to push real-time
notifications to the browser. Blazor Server uses it to send UI updates to the
browser.

Advantages of Blazor Server
There are a few advantages of using Blazor Server versus using Blazor WebAssembly.
However, the key advantage is that everything happens on the server. Since the web app
runs on the server, it has access to everything on the server. As a result, security and data
access are simplified. Also, since everything happens on the server, the assemblies (DLLs)
that contain the web app's code remain on the server.

Hosting models 5

Another advantage of using Blazer Server is that it can run on thin clients and older
browsers, such as Internet Explorer, that do not support WebAssembly.

Finally, the initial load time for the first use of a web app that is using Blazor Server can
be much less than that of a web app that is using Blazor WebAssembly because there are
fewer files to download.

Disadvantages of Blazor Server
The Blazor Server hosting model has a number of disadvantages versus Blazor
WebAssembly due to the fact that the browser must maintain a constant connection to the
server. Since there is no offline support, every single user interaction requires a network
roundtrip. As a result of all of these roundtrips, Blazor Server web apps have higher
latency than Blazor WebAssembly web apps and can feel sluggish.

Tip
Latency is the time between the UI action and the time when the UI is updated.

Another disadvantage of using Blazor Sever is that it relies on SignalR for every single
UI update. Microsoft's support for SignalR has been improving, but it can be challenging
to scale.

Finally, a Blazor Server web app must be served from an ASP.NET Core server.

Blazor WebAssembly
The Blazor WebAssembly hosting model is the most recent hosting model released by
Microsoft, and the topic of this book. Blazor WebAssembly 3.2.0 was released in May
2020. Blazor WebAssembly in .NET 5 was released as part of the .NET 5.0 release in
November 2020 and it is not a long-term support (LTS) release. This book will be using
Blazor WebAssembly in .NET 5 for all of the projects.

Tip
LTS releases are supported by Microsoft for at least 3 years after their initial
release. Blazor WebAssembly in .NET 5 is not an LTS release. If you are starting
a new project with Blazor WebAssembly, you should use the most recent
release..

6 Introduction to Blazor WebAssembly

The following diagram illustrates the Blazor WebAssembly hosting model:

Figure 1.2 – Blazor WebAssembly

In this hosting model, the web app is executed on the browser. In order for both the
web app and the .NET runtime to run on the browser, the browser must support
WebAssembly. WebAssembly is a web standard supported by all modern browsers,
including mobile browsers. While Blazor WebAssembly itself does not require a server,
the web app may require one for data access and authentication.

In the past, the only way to run C# code on the browser was to use a plugin, such as
Silverlight. Silverlight was a free browser plugin provided by Microsoft. It was very
popular until Apple decided to disallow the use of a browser plugin on iOS. As a result of
Apple's decision, Silverlight was abandoned by Microsoft. Blazor does not rely on plugins
or recompiling the code into other languages. Instead, it is based on open web standards
and is supported by all modern browsers, including mobile browsers.

Advantages of Blazor WebAssembly
Blazor WebAssembly has many advantages. First of all, since it runs on the browser, it
relies on client resources instead of server resources. Therefore, unlike Blazor Server, there
is no latency due to each UI interaction requiring a roundtrip to the server.

Blazor WebAssembly can be used to create a Progressive Web App (PWA). A PWA is
a web app that looks and feels like a native application. They provide offline functionality,
background activity, native API layers, and push notifications. They can even be listed in
the various app stores. By configuring your Blazor WebAssembly app as a PWA, your app
can reach anyone, anywhere, on any device with a single code base. For more information
on creating a PWA, refer to Chapter 5, Building a Weather App as a Progressive Web
App (PWA).

Finally, a Blazor WebAssembly web app does not rely on an ASP.NET Core server. In
fact, it is possible to deploy a Blazor WebAssembly web app without a server.

What is WebAssembly? 7

Disadvantages of Blazor WebAssembly
To be fair, there are some disadvantages to using Blazor WebAssembly that should
be considered. For starters, when using Blazor WebAssembly, the .NET runtime, the
dotnet.wasm file and your assemblies all need to be downloaded to the browser for
your web app to work. Therefore, a Blazor WebAssembly application usually takes longer
to initially load than a Blazor Server application. However, there are strategies, such as
deferring the loading of some of the assemblies until they are needed, designed to speed
up the load time of the application.

When debugging a Blazor Server application, you can use the standard .NET debugger.
However, to debug a Blazor WebAssembly application, you need to use the browser's
debugger. To enable the browser's debugger, you need to launch the browser with remote
debugging enabled and then use Alt+Shift+D to initiate a proxy component that sits
between the browser and the editor. Unfortunately, due to the complexities concerning
debugging on the browser, there are certain scenarios, such as hitting breakpoints before
the debug proxy is running and breaking on unhandled exceptions, that the debugger
currently can't handle. Microsoft is actively working on improving the debugging
experience.

Another disadvantage of Blazor WebAssembly web apps is that they are only as powerful
as the browser that they run on. Therefore, thin clients are not supported. Blazor
WebAssembly can only run on a browser that supports WebAssembly. Luckily, due to
a significant amount of coordination between the World Wide Web Consortium (W3C)
and engineers from Apple, Google, Microsoft and Mozilla, all modern browsers support
WebAssembly.

The Blazor framework provides two different hosting models, Blazor Server and Blazor
WebAssembly. A Blazor Server web app runs on the server and uses SignalR to serve
the HTML to the browser. Conversely, a Blazor WebAssembly web app runs directly in
the browser. They each have their advantages and disadvantages. However, if you want
to create responsive, native-like web apps that can work offline, you need to use Blazor
WebAssembly.

What is WebAssembly?
WebAssembly is a binary instruction format that allows code written in C# to run on the
browser at near-native speed. To run .NET binaries in a web browser, it uses a version
of the .NET runtime that has been compiled to WebAssembly. You can think of it as
executing natively compiled code in a browser.

WebAssembly is an open standard developed by a W3C Community Group. It was
originally announced in 2015, and the first browser that supported it was released in 2017.

8 Introduction to Blazor WebAssembly

WebAssembly goals
When WebAssembly was originally being developed, there were four main design goals
for the project:

•	 Fast and efficient

•	 Safe

•	 Open

•	 Don't break the web

WebAssembly is fast and efficient. It is designed to allow developers to write code in any
language that can then be compiled to run in the browser. Since the code is compiled, it is
fast and performs at near-native speed.

WebAssembly is safe. It does not allow direct interaction with the browser's DOM.
Instead, it runs in its own memory-safe, sandboxed execution environment. You must use
JavaScript interop to interact with the DOM. The project in Chapter 4, Building a Local
Storage Service using JavaScript Interoperability (JS interop), will teach you how to use
JavaScript interop.

WebAssembly is open. Although it is a low-level assembly language, it can be edited and
debugged by hand.

WebAssembly didn't break the web. It is a web standard that is designed to work with
other web technologies. Also, WebAssembly modules can access the same Web APIs that
are accessible from JavaScript.

WebAssembly support
As mentioned earlier, WebAssembly runs on all modern browsers, including mobile
browsers. As you can see from the following table, all current versions of the most popular
browsers are compatible with WebAssembly:

Figure 1.3 – WebAssembly browser compatibility

Setting up your PC 9

Important note
Microsoft Internet Explorer does not currently support WebAssembly and
will never support WebAssembly. So, if your web app must be able to run on
Microsoft Internet Explorer, do not use Blazor WebAssembly.

WebAssembly is a web standard that allows developers to run code written in any
language in the browser. It is supported by all modern browsers.

Setting up your PC
For the projects in this book, we use Visual Studio 2019, .NET 5.0, and SQL Server 2019.

All of the projects are built using Visual Studio 2019 Community Edition version 16.9.5
with the ASP.NET and Web Development workload. If you need to install Visual Studio
2019, follow the directions in the Installing Visual Studio Community Edition section later
in this chapter.

Tip
Although we are using Visual Studio 2019 Community Edition, any edition of
Visual Studio 2019 can be used to complete the projects in this book. Microsoft
Visual Studio Code can also be used.

Blazor WebAssembly in .NET 5 requires .NET 5.0. To check the version of .NET that
is running on your computer, open the Command Prompt and enter the following
command:

dotnet –-version

If your computer is not running .NET 5.0, follow the directions in the Installing .NET 5.0
section later in this chapter.

The final two projects in this book use SQL Server 2019 Express Edition as the backend
database. If you need to install SQL Server 2019 Express Edition, follow the directions in
the Installing SQL Server Express section later in this chapter.

Tip
Although we are using SQL Server 2019 Express Edition, any year or edition of
SQL Server can be used to complete the projects in this book.

10 Introduction to Blazor WebAssembly

Installing Visual Studio Community Edition
Visual Studio Community Edition is the free edition of Visual Studio. To install Visual
Studio Community Edition, perform the following steps:

1.	 Download the Visual Studio installer from https://visualstudio.
microsoft.com.

2.	 Once the download is complete, run the installer to complete the installation. The
first step in the installation process is for the Visual Studio installer to check the
system for existing versions of Visual Studio.

3.	 Once the installer has finished checking for installed versions, it will open the
following installation dialog:

Figure 1.4 – The Visual Studio installer

4.	 Select the ASP.NET and web development workload and click the Install button to
complete the installation.

https://visualstudio.microsoft.com
https://visualstudio.microsoft.com

Setting up your PC 11

Installing .NET 5.0
To install .NET 5.0, perform the following steps:

1.	 Download the installer from https://dotnet.microsoft.com/download/
dotnet/5.0.

2.	 Once the download completes, run the installer to complete the installation of .NET
5.0 on your computer.

3.	 Open the Command Prompt and enter the following command to verify that your
computer is now running .NET 5.0:

dotnet –-version

The following screenshot is from a computer that is running .NET 5.0:

Figure 1.5 – .NET version

Installing SQL Server Express
SQL Server Express is the free edition of SQL Server. To install SQL Server Express, do
the following:

1.	 Download the SQL Server installer from https://www.microsoft.com/
en-us/sql-server/sql-server-downloads.

2.	 After the download completes, run the SQL Server installer.

https://dotnet.microsoft.com/download/dotnet/5.0
https://dotnet.microsoft.com/download/dotnet/5.0
https://www.microsoft.com/en-us/sql-server/sql-server-downloads
https://www.microsoft.com/en-us/sql-server/sql-server-downloads

12 Introduction to Blazor WebAssembly

3.	 Select the Basic installation type:

Figure 1.6 – The SQL Server installer

4.	 Click the Accept button to accept the Microsoft SQL Server License Terms.

5.	 Click the Install button to complete the installation.

The following screenshot shows the dialog that appears after SQL Server Express has been
successfully installed:

Setting up your PC 13

Figure 1.7 – SQL Server Express Edition

To complete all the projects in this book, you will require a code editor, such as Visual
Studio 2019, .Net 5.0, or SQL Server. In this chapter, we showed you how to install Visual
Studio 2019 Community Edition, .NET 5.0, and SQL Server 2019 Express Edition.

14 Introduction to Blazor WebAssembly

Summary
After completing this chapter, you should understand the benefits of using Blazor
WebAssembly versus other web development frameworks and be prepared to complete
the projects in this book.

In this chapter, we introduced the Blazor framework. The Blazor framework is built on
.NET Framework and allows developers to use C# on both the frontend and backend
of a web app.

After that, we compared Blazor Server with Blazor WebAssembly. Blazor WebAssembly
has many advantages over Blazor Server due to the fact that it runs on the browser while
Blazor Server runs on the server. A Blazor WebAssembly web app can run offline and feels
much more like a native application because all of the code is run directly on the browser.
Finally, a Blazor WebAssembly app can be easily converted into a PWA.

In the last part of the chapter, we explained how to set up your computer with Visual
Studio 2019 Community Edition, .NET 5.0, and SQL Server 2019 Express, all of which are
required to complete the projects in this book.

Now that your computer is set up to create a Blazor WebAssembly web app, it is time to
get started. In the next chapter, you will create your first Blazor WebAssembly web app.

Questions
The following questions are provided for your consideration:

1.	 Does using Blazor WebAssembly mean that you never need to write JavaScript
ever again?

2.	 Does Blazor WebAssembly require that any plugins be installed on the browser?

3.	 How much does it cost to get started developing with Blazor WebAssembly?

Further reading
The following resources provide more information concerning the topics in this chapter:

•	 For more information on Blazor, refer to https://blazor.net.

•	 For more information on the .NET Foundation, refer to
https://dotnetfoundation.org.

https://blazor.net
https://dotnetfoundation.org

Further reading 15

•	 For more information on the ASP.NET repository on GitHub, refer to
https://github.com/dotnet/aspnetcore.

•	 For more information on SignalR, refer to https://docs.microsoft.com/
en-us/aspnet/core/signalr/introduction.

•	 For more information on PWAs, refer to https://developer.mozilla.org/
en-US/docs/Web/Progressive_web_apps.

•	 For general information on WebAssembly, refer to
https://webassembly.org.

•	 For more information on the W3C WebAssembly Core Specification, refer to
https://www.w3.org/TR/wasm-core.

•	 For more information on browser compatibility with WebAssembly, refer to
https://caniuse.com/?search=wasm.

https://github.com/dotnet/aspnetcore
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://docs.microsoft.com/en-us/aspnet/core/signalr/introduction
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://webassembly.org
https://www.w3.org/TR/wasm-core
https://caniuse.com/?search=wasm.

2
Building Your First

Blazor WebAssembly
Application

Razor components are the building blocks of Blazor WebAssembly applications. A Razor
component is a chunk of user interface that can be shared, nested, and reused. Razor
components are ordinary C# classes and can be placed anywhere in a project.

In this chapter, we will learn about Razor components. We will learn how to use them,
how to apply parameters, and about their life cycle and their structure. We will learn how
to use the @page directive to define routing. We will also learn how to use Razor syntax
to combine C# code with HTML markup.

The Blazor WebAssembly project in this chapter will be created by using the Blazor
WebAssembly App project template provided by Microsoft. After we create the project,
we will examine it to further familiarize ourselves with Razor components. We will learn
how to use components, how to add parameters, how to apply routing, how to use Razor
syntax, and how to separate the Razor markup and code into separate files. Finally,
we will configure our own custom project template that creates an empty Blazor
WebAssembly project.

18 Building Your First Blazor WebAssembly Application

In this chapter, we will cover the following topics:

•	 Razor components

•	 Routing

•	 Razor syntax

•	 Using the Blazor App project template

•	 Creating an empty Blazor WebAssembly project template

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free Community edition of Visual Studio 2019, refer to
Chapter 1, Introduction to Blazor WebAssembly.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter02.

The code in action video is available here: https://bit.ly/3bEZrrg.

Razor components
Blazor WebAssembly is a component-driven framework. Razor components are
the fundamental building blocks of a Blazor WebAssembly application. They are
classes that are implemented using a combination of C#, HTML, and Razor markup.
When the web app loads, the classes get downloaded into the browser as normal .NET
assemblies (DLLs).

Important note
In this book, the terms Razor component and component are used
interchangeably.

Using components
HTML element syntax is used to add a component to another component. The markup
looks like an HTML tag where the name of the tag is the component type.

The following markup in the Pages\Index.razor file of the Demo project that we will
create in this chapter will render a SurveyPrompt instance:

<SurveyPrompt Title="How is Blazor working for you?" />

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter02
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter02
https://bit.ly/3bEZrrg

Razor components 19

The preceding SurveyPrompt element includes an attribute parameter named Title.

Parameters
Component parameters are used to make components dynamic. Parameters are public
properties of the component that are decorated with either the Parameter attribute
or the CascadingParameter attribute. Parameters can be simple types, complex types,
functions, RenderFragments, or event callbacks.

The following code for a component named HelloWorld includes a parameter
named Text:

HelloWorld.razor

<h1>Hello @Text!</h1>

@code {

 [Parameter] public string Text { get; set; }

}

To use the HelloWorld component, include the following HTML syntax in another
component:

<HelloWorld Text="World" />

In the preceding example, the Text attribute of the HelloWorld component is the
source of the Text parameter. This screenshot shows the results of using the component
as indicated:

Figure 2.1 – HelloWorld component

A component can also receive parameters from its route or a query string. You will learn
more about the different types of parameters later in this chapter.

Naming components
The name of a Razor component must be in title case. Therefore, helloWorld would
not be a valid name for a Razor component since the h is not capitalized. Also, Razor
components use the RAZOR extension rather than the CSHTML extension that is used by
Razor Pages.

20 Building Your First Blazor WebAssembly Application

Important note
Razor components must start with a capital letter.

Component life cycle
Razor components inherit from the ComponentBase class. The ComponentBase class
includes both asynchronous and synchronous methods used to manage the life cycle of
a component. In this book, we will be using the asynchronous versions of the methods
since they execute without blocking other operations. This is the order in which the
methods in the life cycle of a component are invoked:

1.	 SetParameterAsync: This method sets the parameters that are supplied by the
component's parent in the render tree.

2.	 OnInitializedAsync: This method is invoked after the component is first
rendered.

3.	 OnParametersSetAsync: This method is invoked after the component
initializes and each time the component re-renders.

4.	 OnAfterRenderAsync: This method is invoked after the component has
finished rendering. This method is for working with JavaScript since JavaScript
requires the Document Object Model (DOM) elements to be rendered before
they can do any work.

Component structure
The following diagram shows code from the Counter component of the Demo project
that we will create in this chapter:

Figure 2.2 – Component structure

Razor components 21

The code in the preceding example is divided into three sections:

•	 Directives

•	 Markup

•	 Code Block

Each of the sections has a different purpose.

Directives
Directives are used to add special functionality, such as routing, layout, and dependency
injection. They are defined within Razor and you cannot define your own directives.

In the preceding example, there is only one directive used – the @page directive. The @
page directive is used for routing. In this example, the following URL will route the user
to the Counter component:

/counter

A typical page can include many directives at the top of the page. Also, many pages have
more than one @page directive.

Most of the directives in Razor can be used in a Blazor WebAssembly application. These
are the Razor directives that are used in Blazor, in alphabetical order:

•	 @attribute: This directive adds a class-level attribute to the component. The
following example adds the [Authorize] attribute:

@attribute [Authorize]

•	 @code: This directive adds class members to the component. In the example, it is
used to distinguish the code block.

•	 @implements: This directive implements the specified class.

•	 @inherits: This directive provides full control of the class that the view inherits.

•	 @inject: This directive is used for dependency injection. It enables the component
to inject a service from the dependency injection container into the view. The
following example injects HttpClient defined in the Program.cs file into the
component:

@inject HttpClient Http

•	 @layout: This directive is used to specify a layout for the Razor component.

22 Building Your First Blazor WebAssembly Application

•	 @namespace: This directive sets the component's namespace. You only need to use
this directive if you do not want to use the default namespace for the component.
The default namespace is based on the location of the component.

•	 @page: This directive is used for routing.

•	 @typeparam: This directive sets a type parameter for the component.

•	 @using: This directive controls the components that are in scope.

Markup
This is HTML with Razor syntax. The Razor syntax can be used to render text and
allows C# to be used as part of the markup. We will cover more about Razor syntax later
in this chapter.

Code block
The code block contains the logic for the page. It begins with the @code directive. By
convention, the @code directive is at the bottom of the page. It is the only file-level
directive that is not placed at the top of the page.

The code block is where we add C# fields, properties, and methods to the component.
Later in this chapter, we will move the code block to a separate code-behind file.

Razor components are the building blocks of a Blazor WebAssembly application. They
are easy to use since they are simply a combination of HTML markup and C# code. In the
next section, we will see how routing is used to navigate between each of the components.

Routing in Blazor WebAssembly
In Blazor WebAssembly, routing is handled on the client, not on the server. As you
navigate in the browser, Blazor intercepts that navigation and renders the component with
the matching route.

The URLs are resolved relative to the base path that is specified in the wwwroot/index.
html file. It is specified in the head element using the following syntax:

 <base href="/" />

Unlike other frameworks that you may have used, the route is not inferred from the
location of its file. For example, in the Demo project, the Counter component is in the /
Pages/Counter folder, yet it uses the following route:

@page "/counter"

Routing in Blazor WebAssembly 23

Route parameters
The Router component uses route parameters to populate the parameters of the
corresponding component. The parameters of both the component and the route must
have the same name, but they are not case sensitive.

Since optional route parameters are not supported, you may need to provide more than
one @page directive to a component to simulate optional parameters. The following
example shows how to include multiple @page parameters:

RoutingExample.razor

@page "/routing"

@page "/routing/{text}"

<h1>Blazor WebAssembly is @Text!</h1>

@code {

 [Parameter] public string Text { get; set; }

 protected override void OnInitialized()

 {

 Text = Text ?? "fantastic";

 }

}

In the preceding code, the first @page directive allows navigation to the component
without a parameter and the second @page directive allows a route parameter. If a value
for text is provided, it is assigned to the Text property of the component. If the Text
property of the component is null, it is set to fantastic.

The following URL will route the user to the RoutingExample component:

/routing

The following URL will also route the user to the RoutingExample component, but this
time the Text parameter will be set by the route:

/routing/amazing

This screenshot shows the results of using the indicated route:

Figure 2.3 – RoutingExample component

24 Building Your First Blazor WebAssembly Application

Important note
Route parameters are not case sensitive.

Catch-all route parameters
Catch-all route parameters are used to capture paths across multiple folder boundaries.
This type of route parameter is a string type and can only be placed at the end of
the URL.

This is a sample component that uses a catch-all route parameter:

CatchAll.razor

@page "/{*path}"

<h1>Catch All</h1>

Route: @Path

@code {

 [Parameter] public string Path { get; set; }

}

For the /error/type/3 URL, the preceding code will set the value of the Path
parameter to error/type/3:

Figure 2.4 – Catch-all route parameter example

Route constraints
Route constraints are used to enforce the datatype of a route parameter. To define a
constraint, add a colon followed by the constraint type to the parameter. In the following
example, the route is expecting a route parameter named Increment with the type of
int:

@page "/counter/{increment:int}"

Razor syntax 25

The following route constraints are supported:

Figure 2.5 – Supported route constraints

The following types are not currently supported as constraints:

•	 Regular expressions

•	 Enums

•	 Custom constraints

Routing is handled on the client. We can use both route parameters and catch-all route
parameters to enable routing. Route constraints are used to ensure that a route parameter
is of the required datatype. Razor components use Razor syntax to seamlessly merge
HTML with C# code, which is what we will see in the next section.

Razor syntax
Razor syntax is made up of HTML, Razor markup, and C#. Rendering HTML from
a Razor component is the same as rendering HTML from an HTML file. The HTML in
a Razor component is rendered by the server unchanged. Razor syntax uses both inline
expressions and control structures.

Inline expressions
Inline expressions start with an @ symbol followed by a variable or function name. This is
an example of an inline expression:

<h1>Blazor is @Text!</h1>

26 Building Your First Blazor WebAssembly Application

Control structures
Control structures also start with an @ symbol. The content within the curly brackets is
evaluated and rendered to the output. This is an example of an if statement from the
FetchData component in the Demo project:

@if (forecasts == null)

{

 <p>Loading...</p>

}

Each code statement within a Razor code block must end with a semicolon. C# code is
case sensitive and strings must be enclosed in quotation marks.

Conditionals
The following types of conditionals are included in Razor syntax:

•	 if statements

•	 switch statements

This is an example of an if statement:

@if (DateTime.Now.DayOfWeek.ToString() != "Friday")

{

 <p>Today is not Friday.</p>

}

else if (DateTime.Now.Day != 13)

{

 <p>Today is not the 13th.</p>

}

else

{

 <p>Today is Friday the 13th.</p>

}

The preceding code uses an if statement to check it the current day of the week is Friday
and/or the current day of the month is the 13th.

Razor syntax 27

This is an example of a switch statement:

@switch (value)

{

 case 1:

 <p>The value is 1!</p>

 break;

 case 42:

 <p>Your number is 42!</p>

 break;

 default:

 <p>Your number was not 1 or 42.</p>

 break;

}

@code {

 private int value = 2;

}

The preceding switch statement compares the value variable to 1 and 42.

Loops
The following types of loops are included in Razor syntax:

•	 for loops

•	 foreach loops

•	 while loops

•	 do while loops

Each of the following examples uses an array of the WeatherForecast type.
WeatherForecast includes a Summary property and is defined in the Demo project.

28 Building Your First Blazor WebAssembly Application

This is an example of a for loop:

@for (var i = 0; i < forecasts.Count(); i++)

{

 <div> forecasts[i].Summary</div>

};

@code {

 private WeatherForecast[] forecasts;

}

This is an example of a foreach loop:

@foreach (var forecast in forecasts)

{

 <div>@forecast.Summary</div>

};

@code {

 private WeatherForecast[] forecasts;

}

This is an example of a while loop:

@while (i < forecasts.Count())

{

 <div>@forecasts[i].Summary</div>

 i++;

};

@code {

 private WeatherForecast[] forecasts;

 private int i = 0;

}

This is an example of a do while loop:

@do

{

 <div>@forecasts[i].Summary</div>

 i++;

} while (i < forecasts.Count());

Project overview 29

@code {

 private WeatherForecast[] forecasts;

 private int i = 0;

}

Razor syntax is easy to learn if you already know C#. It includes both inline expressions
and control structures such as conditionals and loops.

Project overview
The Blazor WebAssembly application that we are going to build in this chapter is a simple
three-page application. Each page will be used to demonstrate one or more features of
Razor components.

This is a screenshot of the completed Demo project:

Figure 2.6 – Home page of the Demo project

After we have completed the Demo project, we will convert it into an empty Blazor
WebAssembly project. The empty Blazor WebAssembly project will be used as the basis
for a custom Blazor WebAssembly App project template.

30 Building Your First Blazor WebAssembly Application

Creating the Demo Blazor WebAssembly
project
The Demo project that we are creating is based on one of the many sample projects that
are provided by the Blazor WebAssembly App project template. After we have used the
template to create the project, we will examine the files in the sample project and update
some of the files to demonstrate how to use Razor components. Finally, we will separate
the code block of one of the components into a separate file to demonstrate how to use the
code-behind technique to separate the markup from the code.

Creating the Demo project
Visual Studio comes with quite a few project templates. We are going to use the Blazor
WebAssembly App project template to create our first Blazor WebAssembly project. Since
this project template can be used to create many different types of Blazor projects, it is
important to follow the instructions carefully:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt+S) textbox, enter Blazor and hit the Enter key.

The following screenshot shows the Blazor WebAssembly App project template
that we will be using:

Figure 2.7 – Blazor WebAssembly App project template

4.	 Select the Blazor WebAssembly App project template and click the Next button.

Creating the Demo Blazor WebAssembly project 31

5.	 Enter Demo in the Project name textbox and click the Next button.

This is a screenshot of the dialog used to configure our new project:

Figure 2.8 – The Configure your new project dialog

Tip
In the preceding example, we placed the Demo project into the E:\Blazor
folder. However, the location of this project is not important.

32 Building Your First Blazor WebAssembly Application

6.	 Select .NET 5.0 as the version of the .NET Framework to use.

This is a screenshot of the dialog used to create our new Blazor WebAssembly app:

Figure 2.9 – Additional information for the Blazor WebAssembly App dialog

7.	 Click the Create button.

You have created the Demo Blazor WebAssembly project.

Running the Demo project
Once the project has been created, you need to run it to get an understanding of what it
does. The Demo project contains three pages: Home, Counter, and Fetch data:

1.	 From the Debug menu, select the Start Without Debugging (Ctrl+F5) option to
run the Demo project.

This is a screenshot of the Home page from the Demo project:

Creating the Demo Blazor WebAssembly project 33

Figure 2.10 – The Home page
The Home page is split into two sections. The navigation menu is on the left side of
the page and the body is on the right side of the page. The body of the Home page
consists of some static text and a link to a survey.

2.	 Click the Counter option on the navigation menu to navigate to the Counter page.

This is a screenshot of the Counter page from the Demo project:

Figure 2.11 – The Counter page
The body of the Counter page includes a counter and a Click me button. Each
time the button on the Counter page is clicked, the counter is incremented without
a page refresh.

Important note
Since this is a Single-Page Application (SPA), only the section of the page that
needs to be updated is updated.

3.	 Click the Fetch data option on the navigation menu to navigate to the Fetch
data page.

34 Building Your First Blazor WebAssembly Application

This is a screenshot of the Fetch data page from the Demo project:

Figure 2.12 – The Fetch data page

The body of the Fetch data page includes a table that shows the weather forecast for
a few days in 2018. As you will see, the data displayed in the table is static data from the
wwwroot\sample-data\weather.json file.

Examining the Demo project's structure
Now let's return to Visual Studio to examine the files in the Demo project.

The following figure shows the project's structure:

Figure 2.13 – Project structure

Creating the Demo Blazor WebAssembly project 35

The project includes quite a few files with some of them divided into their own folders.
Let's examine them.

The wwwroot folder
The wwwroot folder is the application's web root. Only the files in this folder are
web-addressable. The wwwroot folder contains a collection of Cascading Style Sheets
(CSS) files, a sample data file, an icon file, and index.html. Later in this book, in
addition to these types of files, we will use this folder for public static resources such as
images and JavaScript files.

The index.html file is the root page of the web application. Whenever a page is
initially requested, the contents of the index.html page are rendered and returned
in the response. The head element of the index.html file includes links to each of
the CSS files in the css folder and specifies the base path to use for the web app. The
body element of the index.html file includes two div elements and a reference to the
blazor.webassembly.js file.

This is the code in the body element of the index.html file:

<body>

 <div id="app">Loading...</div>

 <div id="blazor-error-ui">

 An unhandled error has occurred.

 Reload

 x

 </div>

 <script

 src="_framework/blazor.webassembly.js"></script>

</body>

The highlighted div element in the preceding code loads the App component.

The blazor-error-ui div element is for displaying unhandled exceptions. The
styling for this div element is in the wwwroot\css\app.css file. The blazor.
webassembly.js file is the script that downloads the .NET runtime, your application's
assemblies, and your application's dependencies. It also initializes the runtime to run the
web app.

36 Building Your First Blazor WebAssembly Application

The App component
The App component is defined in the App.razor file:

App.razor

<Router AppAssembly="@typeof(Program).Assembly"

 PreferExactMatches="@true">

 <Found Context="routeData">

 <RouteView RouteData="@routeData"

 DefaultLayout="@typeof(MainLayout)" />

 </Found>

 <NotFound>

 <LayoutView Layout="@typeof(MainLayout)">

 <p>Sorry, there's nothing at this address.</p>

 </LayoutView>

 </NotFound>

</Router>

The App component is the root component of a Blazor WebAssembly application. It uses
the Router component to set up the routing for the web app. In the preceding code, if
the route is found, the RouteView component receives RouteData and renders the
specified component using the indicated DefaultLayout. If the route is not found, the
NotFound template is used and LayoutView is rendered using the indicated Layout.

As you can see, in the Demo project, both the Found template and the NotFound
template are using the same layout. They are both using the MainLayout component.
However, they do not need to use the same layout component.

The Shared folder
The Shared folder in the Demo project includes the shared user interface Razor
components, including the MainLayout component. Each of these components may be
used one or more times by other Razor components.

The Pages folder
The Pages folder includes the routable Razor components used by the project. The
routable components are Counter, FetchData, and Index. Each of these components
includes an @page directive that is used to route the user to the page.

Creating the Demo Blazor WebAssembly project 37

The _Imports.razor file
This file includes Razor directives such as the @using directive for namespaces. Your
project can include multiple _Imports.razor files. Each one is applied to its current
folder and subfolders. Any @using directives in the _Imports.razor file are only
applied to Razor (RAZOR) files. They are not applied to C# (CS) files. This distinction is
important when using the code-behind technique.

The Program.cs file
The Program.cs file is the entry point for the application.

Examining the shared Razor components
The shared Razor components are in the Shared folder. There are three shared Razor
components in the Demo project:

•	 The MainLayout component

•	 The NavMenu component

•	 The SurveyPrompt component

The MainLayout component
The MainLayout component is used to define the page layout for the web app:

Pages/MainLayout.razor

@inherits LayoutComponentBase

<div class="page">

 <div class="sidebar">

 <NavMenu />

 </div>

 <div class="main">

 <div class="top-row px-4">

 <a href="http://blazor.net"

 target="_blank"

 class="ml-md-auto">About

 </div>

 <div class="content px-4">

 @Body

38 Building Your First Blazor WebAssembly Application

 </div>

 </div>

</div>

The MainLayout component inherits from the LayoutComponentBase class.
LayoutComponentBase represents a layout and has only one property, which is the
Body property. The Body property gets the content to be rendered inside the layout.

The following diagram illustrates the layout of a page as defined by the MainLayout
component:

Figure 2.14 – Screen layout

Tip
The Blazor WebAssembly App project template uses Bootstrap 4 to style its
pages. If you are unfamiliar with Bootstrap 4, you should refer to https://
getbootstrap.com to familiarize yourself with its syntax.

https://getbootstrap.com
https://getbootstrap.com

Creating the Demo Blazor WebAssembly project 39

The NavMenu component
The NavMenu component defines the navigation menu for the Demo project. It uses
multiple NavLink components to define the various menu options. This is the section of
the NavMenu component that references the NavLink components used for the project's
navigation:

<div class="@NavMenuCssClass" @onclick="ToggleNavMenu">

 <ul class="nav flex-column">

 <li class="nav-item px-3">

 <NavLink class="nav-link" href=""

 Match="NavLinkMatch.All">

 <span class="oi oi-home"

 aria-hidden="true"> Home

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="counter">

 <span class="oi oi-plus"

 aria-hidden="true"> Counter

 </NavLink>

 <li class="nav-item px-3">

 <NavLink class="nav-link" href="fetchdata">

 <span class="oi oi-list-rich"

 aria-hidden="true"> Fetch data

 </NavLink>

</div>

40 Building Your First Blazor WebAssembly Application

The NavLink component is defined in the Microsoft.AspNetCore.Components.
Routing namespace. It behaves like an a element, except it has added functionality
that highlights the current URL. This is the HTML that is rendered by NavLink for the
Counter component when the Counter component is selected:

 Counter

The style used for the nav-link class is from Bootstrap. The style used for the active
class is defined in the wwwroot\css\app.css file:

.sidebar .nav-item a.active {

 background-color: rgba(255,255,255,0.25);

 color: white;

}

The SurveyPrompt component
The SurveyPrompt component creates a link to a brief survey on Blazor.

Examining the routable Razor components
The routable Razor components are in the Pages folder. There are three routable Razor
components in the Demo project:

•	 The Index component

•	 The Counter component

•	 The FetchData component

Creating the Demo Blazor WebAssembly project 41

The Index component
The Home page of the Demo project uses the Index component that is defined in the
Pages\Index.razor file:

Pages\Index.razor

@page "/"

<h1>Hello, world!</h1>

Welcome to your new app.

<SurveyPrompt Title="How is Blazor working for you?" />

The preceding code includes an @page directive that references the root of the web app
and some markup. The markup includes a SurveyPrompt component.

The Counter component
The Counter component is more complex than the Index component. Similar to the
Index component, it contains an @page directive that is used for routing and some
markup. However, it also contains a C# code block:

Pages\Counter.razor

@page "/counter"

<h1>Counter</h1>

<p>Current count: @currentCount</p>

<button class="btn btn-primary" @onclick="IncrementCount">

 Click me

</button>

 Counter

@code {

 private int currentCount = 0;

 private void IncrementCount()

 {

42 Building Your First Blazor WebAssembly Application

 currentCount++;

 }

}

In the preceding code block, a private currentCount variable is used to hold the
number of clicks. Each time the Counter button is clicked, the Counter component's
registered @onclick handler is called. In this case, it is the IncrementCount method.

The IncrementCount method increments the value of the currentCount variable
and the Counter component regenerates its render tree. Blazor compares the new render
tree against the previous one and applies any modifications to the browser's DOM. This
results in the displayed count being updated.

The FetchData component
The FetchData component is by far the most complex component in the Demo project.

These are the directives in the Pages\FetchData.razor file:

@page "/fetchdata"

@inject HttpClient Http

The @page directive is used for routing and the @inject directive is used for
dependency injection. In this component, HttpClient that is defined in the Program.
cs file is being injected into the view. For more information on dependency injection,
refer to Chapter 6, Building a Shopping Cart Using Application State.

The following markup demonstrates the use of a very important pattern that you will
often use when developing a Blazor WebAssembly application. Because the application
runs on the browser, all data access must be asynchronous. That means that when the page
first loads, the data will be null. For that reason, you need to test for the null case before
attempting to process the data.

This is the markup in the Pages\FetchData.razor file:

<h1>Weather forecast</h1>

<p>This component demonstrates fetching data from the server.</
p>

@if (forecasts == null)

{

 <p>Loading...</p>

}

else

Creating the Demo Blazor WebAssembly project 43

{

 <table class="table">

 <thead>

 <tr>

 <th>Date</th>

 <th>Temp. (C)</th>

 <th>Temp. (F)</th>

 <th>Summary</th>

 </tr>

 </thead>

 <tbody>

 @foreach (var forecast in forecasts)

 {

 <tr>

 <td>@forecast.Date.ToShortDateString()

 </td>

 <td>@forecast.TemperatureC</td>

 <td>@forecast.TemperatureF</td>

 <td>@forecast.Summary</td>

 </tr>

 }

 </tbody>

 </table>

}

The preceding markup includes an if statement and a foreach loop. While the value of
forecasts is null, a Loading message is displayed. If you do not handle the case when
the value of forecasts is null, the framework will throw an exception. Once the value
of forecasts is no longer null, all of the items in the array are presented in a table.

Important note
The value of forecasts will be null the first time that the page is
rendered.

As previously mentioned, Blazor components have a well-defined life cycle. The
OnInitializedAsync method is invoked when the component is rendered. After the
OnInitializedAsync method completes, the component is re-rendered.

44 Building Your First Blazor WebAssembly Application

This is the code block in the Pages\FetchData.razor file:

@code {

 private WeatherForecast[] forecasts;

 protected override async Task OnInitializedAsync()

 {

 forecasts = await

 Http.GetFromJsonAsync<WeatherForecast[]>

 ("sample-data/weather.json");

 }

 public class WeatherForecast

 {

 public DateTime Date { get; set; }

 public int TemperatureC { get; set; }

 public string Summary { get; set; }

 public int TemperatureF =>

 32 + (int)(TemperatureC / 0.5556);

 }

}

First, the preceding code block declares a parameter to contain an array of the type
WeatherForecast. Next, it uses the OnInitializedAsync asynchronous method
to populate the array. In order to populate the array, the GetFromJsonAsync method
of the HttpClient service is used. For more information on HttpClient, refer to
Chapter 8, Building a Task Manager Using the ASP.NET Web API.

Using a component
Razor components are used by including them in the markup of another component.
We will add a Counter component to the Home page. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Pages\Index.razor file.

3.	 Delete all of the markup. Be sure you do not remove the @page directive at the top
of the file.

Creating the Demo Blazor WebAssembly project 45

4.	 Add the following markup below the @page directive:

<Counter />

5.	 From the Build menu, select the Rebuild Solution option.

6.	 Return to the browser and navigate to the Home page. If the Demo project is not
still running, from the Debug menu, select the Start Without Debugging (Ctrl+F5)
option to run it.

7.	 Use Ctrl + R to refresh the browser.

Tip
Whenever you update your C# code, you need to refresh the browser for the
browser to load the updated DLL.

8.	 Click the Click me button to test the Counter component.

Adding a parameter to a component
Most components require parameters. To add a parameter to a component, use the
Parameter attribute. We will add a parameter to specify the increment used by the
IncrementCount method. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Pages\Counter.razor file.

3.	 Add the following code to the top of the code block to define the new parameter:

[Parameter] public int? Increment { get; set; }

private int increment = 1;

4.	 Update the IncrementCount method to the following:

private void IncrementCount()

{

 currentCount += increment;

}

46 Building Your First Blazor WebAssembly Application

5.	 Add the following OnParametersSet method to set the value of increment to
the value of the Increment parameter:

protected override void OnParametersSet()

{

 if (Increment.HasValue)

 increment = Increment.Value;

}

6.	 Add the highlighted text to the markup of the Click me button to display the
current value of the increment variable:

<button class="btn btn-primary"

 @onclick="IncrementCount">

 Click me (@increment)

</button>

Using a parameter with an attribute
We will add another instance of the Counter component to the Home page that uses the
new parameter. We do this as follows:

1.	 Open the Pages\Index.razor file.

2.	 Add the following markup to the bottom of the Index.razor file:

<Counter Increment="5"/>

As you add the markup, IntelliSense is provided for the new Increment
parameter:

Figure 2.15 – IntelliSense

3.	 From the Build menu, select the Build Solution option.

4.	 Return to the browser.

5.	 Use Ctrl + R to refresh the browser.

6.	 Navigate to the Home page.

Creating the Demo Blazor WebAssembly project 47

The Home page now contains two instances of the Counter component. If you
click the first Click me button, the first counter will be incremented by 1; if you
click the second Click me button, the second counter will be incremented by 5:

Figure 2.16 – The Home page

7.	 Click each of the Click me buttons to verify they both work as intended.

Adding a route parameter
Components can have multiple @page directives. We will add an @page directive to the
Counter component that uses a parameter. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Pages/Counter.razor file.

3.	 Add the following @page directive to the top of the file:

@page "/counter/{increment:int}"

The Counter component now includes two @page directives.

4.	 From the Build menu, select the Build Solution option.

5.	 Return to the browser.

6.	 Navigate to the Counter page.

7.	 Update the URL to the following:

/counter/4

48 Building Your First Blazor WebAssembly Application

Important note
Since the page is automatically reloaded when you change the URL, you do not
need to refresh the browser in order to reload the page.

8.	 Click the Click me button.

The counter should now increment by 4.

9.	 Update the URL to an invalid route:

/counter/a

Since this is not a valid route, you will be directed to the NotFound content defined
in the App component:

Figure 2.17 – Page not found

Tip
If you need to navigate to a URL in code, you should use
NavigationManager. NavigationManager provides a
NavigateTo method that is used to navigate the user to the specified URI
without forcing a page load.

Using partial classes to separate markup from code
Many developers prefer to separate their markup from their C# fields, properties, and
methods. Since Razor components are regular C# classes, they support partial classes. The
partial keyword is used to create a partial class. We will use a partial class to move the
code block from the RAZOR file to a CS file. We do this as follows:

1.	 Return to Visual Studio.

2.	 Right-click the Pages folder and select Add, Class from the menu.

3.	 Name the new class Counter.razor.cs.

Creating a custom Blazor WebAssembly project template 49

4.	 Update the Counter class to be a partial class by using the partial keyword:

public partial class Counter{}

5.	 Open the Pages/Counter.razor file.

6.	 Copy all of the code in the code block to the partial Counter class in the
Counter.razor.cs file.

7.	 Delete the code block from the Counter.razor file.

8.	 Add the following using statement to the Counter.razor.cs file:

using Microsoft.AspNetCore.Components;

9.	 From the Build menu, select the Build Solution option.

10.	 Return to the browser.

11.	 Use Ctrl + R to refresh the browser.

12.	 Navigate to the Counter page.

13.	 Click the Click me button to verify that it still works.

14.	 Close the browser.

Using partial classes gives you the flexibility to move the code in the code block to
a separate file, allowing you to use the code-behind technique.

We have created a Demo project by using the Blazor WebAssembly App project template
provided by Microsoft. We added a parameter to the Counter component and moved
the code in the code block of the Counter component to a separate file.

Creating a custom Blazor WebAssembly
project template
As you have seen, the Demo Blazor WebAssembly project created by the Blazor
WebAssembly App project template includes quite a few files. In later chapters, we will
want to start with an empty Blazor project. So, we will create our own project template
that creates an empty Blazor WebAssembly project.

50 Building Your First Blazor WebAssembly Application

Creating an empty Blazor project
We need to create an empty Blazor WebAssembly project to base our new project template
on. We do this as follows:

1.	 Return to Visual Studio.

2.	 Delete the wwwroot\sample-data folder.

3.	 Delete all of the components in the Pages folder, except for the Index component.

4.	 Open the Index.razor file.

5.	 Delete all of the markup from the Index component. Make sure that you do not
delete the @page directive at the top of the page.

6.	 Delete the Shared\SurveyPrompt.razor file.

7.	 Open the Shared\MainLayout.razor file.

8.	 Remove the About link from the top row of the layout by removing the following
markup:

<a href="http://blazor.net" target="_blank"

 class="ml-md-auto">

 About

9.	 Open the Shared\NavMenu.razor file.

10.	 Remove the li elements for the Counter and Fetch data pages.

11.	 From the Build menu, select the Build Solution option.

12.	 From the Debug menu, select the Start Without Debugging (Ctrl+F5) option to
run the Demo project.

The Demo project is now empty. It only contains a blank Home page.

Creating a custom Blazor WebAssembly project template 51

Creating a project template
The Export Template Wizard is used to create custom project templates. We will use the
empty project that we just created as the basis for a custom project template. We do this as
follows:

1.	 Return to Visual Studio.

2.	 From the Project menu, select the Export Template option to open the Export
Template Wizard window.

3.	 Select Project template on the Choose Template Type dialog and click the Next
button:

Figure 2.18 – The Choose Template Type dialog

52 Building Your First Blazor WebAssembly Application

4.	 Complete the Select Template Options dialog as shown in the following screenshot
and click the Finish button:

Figure 2.19 – The Select Template Options dialog
After you click the Finish button, your new project template will be saved to the
folder indicated in the Output location field on the Select Template Options dialog
and the folder will automatically open. The files that comprise your new project
template are compressed into a file called EmptyBlazorProject.zip.

Creating a custom Blazor WebAssembly project template 53

Updating a custom project template
We need to make a few updates to our custom project template before it is ready to use.
First, we will declare a template parameter for the project's name, and then we will update
the metadata. We do this as follows:

1.	 Extract all of the files from the EmptyBlazorProject.zip file.

The EmptyBlazorProject.zip file contains all of the files from the empty
Demo project as well as a MyTemplate.vstemplate file that contains all of the
metadata for the project template.

2.	 Open the Shared/NavMenu.razor file and replace the word Demo with
$projectname$:

$projectname$

The $projectname$ parameter will be replaced by the name of the project that is
provided by the user when the project is created.

Open the _Imports.razor file and replace the word Demo with
$projectname$:

@using $projectname$

@using $projectname$.Shared

3.	 Open the MyTemplate.vstemplate file.

4.	 Update the value of the Name element to Empty Blazor WebAssembly App:

<Name>Empty Blazor WebAssembly App</Name>

5.	 Add the following elements after the Description element:

 <LanguageTag>C#</LanguageTag>

 <ProjectTypeTag>Web</ProjectTypeTag>

6.	 Replace the Icon element with the following Icon Package element:

<Icon Package="{AAB75614-2F8F-4DA6-B0A6-763C6DBB2969}"
ID="13"/>

54 Building Your First Blazor WebAssembly Application

7.	 Change the ReplaceParameters attribute to true for NavMenu.razor
ProjectItem:

<ProjectItem ReplaceParameters="true"

 TargetFileName="NavMenu.razor">

 NavMenu.razor

</ProjectItem>

8.	 Change the ReplaceParameters attribute to true for _Imports.razor
ProjectItem:

<ProjectItem ReplaceParameters="true"

 TargetFileName="_Imports.razor">

 _Imports.razor

</ProjectItem>

9.	 Save all of the updated files.

10.	 Update the EmtpyBlazorProject.zip file with the updated files.

11.	 Copy EmtpyBlazorProject.zip from the Visual Studio 2019\
MyExportedTemplates folder to the Visual Studio 2019\Templates\
ProjectTemplates folder.

Using a custom project template
We can use a custom project template the same way that we use any of the built-in project
templates. We do this as follows:

1.	 From the File menu, select the New, Project option.

2.	 Enter Blazor in the Search for templates textbox to locate your new template:

Figure 2.20 – Empty Blazor WebAssembly App template

Summary 55

3.	 Select the Empty Blazor WebAssembly App template and click the Next button.

4.	 Update the project name to Sample and click the Create button.

5.	 From the Build menu, select the Build Solution option.

6.	 From the Debug menu, select Start Without Debugging (Ctrl+F5).

We have created a new Sample project by using our custom project template. The only
page in the Sample project is the Home page.

We created an empty project by deleting some of the components and code from
the Demo project that we created in the previous section. Then, we used the Export
Template Wizard to create a custom project template based on the empty project. After
we updated some of the files in the custom project template, we copied them into the
ProjectTemplates folder. Finally, we used the custom project template to create the
Sample project.

Summary
You should now be able to create a Blazor WebAssembly application.

In this chapter, we introduced Razor components, routing, and Razor syntax.

After that, we used the Blazor WebAssembly App project template provided by Microsoft
to create the Demo Blazor WebAssembly project. We added a parameter to the Counter
component and examined how routing works.

In the last part of the chapter, we created an empty Blazor WebAssembly project on which
to base our own custom project template. We created a custom project template using the
Export Template Wizard. After we finished configuring our custom project template,
we used it to create an empty Blazor WebAssembly project.

We will use the Empty Blazor WebAssembly App project template to create the project in
the next chapter of this book.

56 Building Your First Blazor WebAssembly Application

Questions
The following questions are provided for your consideration:

1.	 Can Razor components include JavaScript?

2.	 What types of loops are supported by Razor syntax?

3.	 Can the Blazor App project template be used to create both Blazor WebAssembly
applications and Blazor Server applications?

4.	 What are the advantages of using a custom project template?

5.	 How would you create your own custom item template to automatically create
a code-behind page for each new component?

Further reading
The following resources provide more information concerning the topics in this chapter:

•	 For more information on Bootstrap, refer to https://getbootstrap.com.

•	 For more information on Razor syntax, refer to https://docs.microsoft.
com/en-us/aspnet/core/mvc/views/razor.

•	 For more information on creating custom project templates, refer to
https://docs.microsoft.com/en-us/visualstudio/ide/
creating-project-and-item-templates.

•	 For more information on template parameters, refer to https://docs.
microsoft.com/en-us/visualstudio/ide/template-parameters.s

https://getbootstrap.com
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/aspnet/core/mvc/views/razor
https://docs.microsoft.com/en-us/visualstudio/ide/creating-project-and-item-templates
https://docs.microsoft.com/en-us/visualstudio/ide/creating-project-and-item-templates
https://docs.microsoft.com/en-us/visualstudio/ide/template-parameters
https://docs.microsoft.com/en-us/visualstudio/ide/template-parameters

3
Building a Modal

Dialog Using
Templated

Components
A modal dialog is a dialog that appears on top of all other content in a window and
requires user interaction to close it. Templated components are components that accept
one or more UI templates as parameters. The UI templates can contain any Razor markup.

In this chapter, we will learn about RenderFragment parameters, EventCallback
parameters, and CSS isolation. RenderFragment parameters are used when a parent
component needs to share information with a child component, and conversely,
EventCallback parameters are used when a child component needs to share
information with its parent component. We will also learn how to apply styles to only
a single component by using CSS isolation.

58 Building a Modal Dialog Using Templated Components

In this chapter, we will create a modal dialog component. The component will be
a templated component that can render different HTML based on the contents of its
parameters. It will use event callbacks to return events back to the calling component. It
will use CSS isolation to add the formatting that will make it behave like a modal dialog.
Finally, we will move the component to a Razor class library so that it can be shared with
other projects.

In this chapter, we will cover the following topics:

•	 RenderFragment parameters

•	 EventCallback parameters

•	 CSS isolation

•	 Creating a Razor class library

•	 Creating the modal dialog project

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free Community Edition of Visual Studio 2019, refer
to Chapter 1, Introduction to Blazor WebAssembly. You will also need the Empty Blazor
WebAssembly App project template that we created in Chapter 2, Building Your First
Blazor WebAssembly Application.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter03.

The code in action video is available here: https://bit.ly/33X2Zkc.

RenderFragment parameters
A RenderFragment parameter is a segment of UI content. A RenderFragment
parameter is used to communicate UI content from the parent to the child. The UI
content can include plain text, HTML markup, Razor markup, or another component.

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter03
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter03
https://bit.ly/33X2Zkc

RenderFragment parameters 59

The following code is for the Alert component. The UI content of the Alert
component is displayed when the value of its Show property is true:

Alert.razor

@if (Show)

{

 <div class="dialog-container">

 <div class="dialog">

 <div>

 @ChildContent

 </div>

 <div>

 <button @onclick="OnOk">

 OK

 </button>

 </div>

 </div>

 </div>

}

@code {

 [Parameter] public bool Show { get; set; }

 [Parameter] public EventCallback OnOk { get; set; }

 [Parameter] public RenderFragment ChildContent { get;

 set; }

}

The preceding code, for the Alert component, includes three different types of
parameters: Boolean, RenderFragment, and EventCallback:

•	 The first parameter is the Show property. It is of type Boolean, which is a simple
type. For more information on using simple types as parameters, see Chapter 2,
Building Your First Blazor WebAssembly Application.

•	 The second parameter is the OnOk property. It is of type EventCallback. We will
learn more about EventCallback parameters in the next section.

•	 The last parameter is the ChildContent property. It is of type
RenderFragment.

60 Building a Modal Dialog Using Templated Components

The following markup uses the Alert component to display the current day of the
week in a dialog when the Show Alert button is clicked. The Razor markup between the
opening tag and the closing tag of the Alert element is bound to the ChildContent
property of the Alert component:

Index.razor

@page "/"

<Alert Show="showAlert" OnOk="@(() => showAlert = false)">

 <h1>Alert</h1>

 <p>Today is @DateTime.Now.DayOfWeek.</p>

</Alert>

<button @onclick="@(() => showAlert = true)">

 Show Alert

</button>

@code {

 private bool showAlert = false;

}

The following screenshot shows the dialog that is displayed when the Show Alert button
is clicked:

Figure 3.1 – Sample alert

The name of the RenderFragment parameter must be ChildContent if you want
to use the content of the element without explicitly specifying the parameter's name. For
example, the following markup results in the same output as the preceding markup that
did not explicitly specify ChildContent:

<Alert Show="showAlert" OnOk="@(() => showAlert = false)">

 <ChildContent>

EventCallback parameters 61

 <h1>Alert</h1>

 <p>Today is @DateTime.Now.DayOfWeek.</p>

 </ChildContent>

</Alert>

<button @onclick="@(() => showAlert = true)">

 Show Alert

</button>

@code {

 private bool showAlert = false;

}

The ChildContent element is highlighted in the preceding markup.

Important note
By convention, the name of the RenderFragment parameter used to
capture the content of a parent element must be ChildContent.

It is possible to include multiple RenderFragment parameters in a component
by explicitly specifying each parameter's name in the markup. We will use multiple
RenderFragment parameters to complete the project in this chapter.

A RenderFragment parameter enables a parent component to communicate the UI
content to be used by its child component, while an EventCallback parameter is used
to communicate from the child component back to the parent component. In the next
section, we will see how to use EventCallback parameters.

EventCallback parameters
An event callback is a method that you pass to another method to be called when a
particular event occurs. For example, when the button on the Alert component is clicked,
the @onclick event uses the OnOk parameter to determine the method that should be
called. The method that the OnOK parameter references is defined in the parent component.

EventCallback parameters are used to share information from the child component to
the parent component. They share information with their parent and notify their parent
when something, such as a button click, has occurred. The parent component simply
specifies the method to call when the event is triggered.

62 Building a Modal Dialog Using Templated Components

This is an example of an EventCallback parameter:

[Parameter] public EventCallback OnOk { get; set; }

The following example uses a lambda expression for the OnOk method. When the OnOk
method is called, the value of the showAlert property is set to false:

<Alert Show="showAlert" OnOk="@(() => showAlert = false)">

 <h1>Alert</h1>

 <p>Today is @DateTime.Now.DayOfWeek.</p>

</Alert>

@code {

 private bool showAlert = false;

}

A lambda expression allows you to create an anonymous function. You do not need to use
an anonymous function. The following example shows how to use a method for the OnOk
method instead of an anonymous function:

<Alert Show="showAlert" OnOk="OkClickHandler)">

 <h1>Alert</h1>

 <p>Today is @DateTime.Now.DayOfWeek.</p>

</Alert>

@code {

 private bool showAlert = false;

 private void OkClickHandler()

 {

 showAlert = false;

 }

}

When writing the Alert component, you might be tempted to update the Show
parameter directly from the OnOk event on the component. You must not do so because
if you update the values directly in the component and the component has to be
re-rendered, any state changes will be lost. If you need to maintain state in the component,
you should add a private field to the component.

Important note
Components should never write to their own parameters.

CSS isolation 63

The Alert component displays text on the page, but it does not yet work like a modal
dialog. In order to make it work like a modal dialog, we need to update the style sheets
that are used by the component. We can do that by using CSS isolation. In the next
section, we will see how to use CSS isolation.

CSS isolation
The location of the cascading style sheets (CSS) used to style our Blazor WebAssembly
apps is usually the wwwroot folder. Usually, the styles defined in those CSS files are
applied to all of the components in the web app. However, there are times when you want
more control over the styles that are applied to a particular component. To achieve that,
we use CSS isolation. With CSS isolation, the styles in the designated CSS file will override
the global styles.

Enabling CSS isolation
In order to add a CSS file that is isolated to a certain component, create a CSS file in the
same folder as the component with the same name as the component, but with a CSS file
extension. For example, the CSS file for the Alert.razor component would be called
Alert.razor.css.

The following markup is for an updated version of the Alert component. In this version,
we have added the two highlighted classes:

Alert.razor

@if (Show)

{

 <div class="dialog-container">

 <div class="dialog">

 <div>

 @ChildContent

 </div>

 <div>

 <button @onclick="OnOk">

 OK

 </button>

 </div>

 </div>

64 Building a Modal Dialog Using Templated Components

 </div>

}

@code {

 [Parameter] public bool Show { get; set; }

 [Parameter] public EventCallback OnOk { get; set; }

 [Parameter] public RenderFragment ChildContent { get;

 set; }

}

The following CSS file defines the styles used by the new classes:

Alert.razor.css

.dialog-container {

 position: absolute;

 top: 0;

 bottom: 0;

 left: 0;

 right: 0;

 background-color: rgba(0,0,0,0.6);

 z-index: 2000;

}

.dialog {

 background-color: white;

 margin: auto;

 width: 15rem;

 padding: .5rem

}

The preceding CSS includes styles for both the dialog-container class and the
dialog class:

•	 dialog-container: This class sets the background color of the element to black
with 60% opacity and places it on top of the other elements by setting its z-index
to 2,000.

•	 dialog: This class sets the background color of the element white, centers it
horizontally within its parent, and sets its width to 15 REM.

Project overview 65

The following screenshot shows the Alert component using the preceding CSS file:

Figure 3.2 – Alert component

Supporting child components
By default, when using CSS isolation, the CSS styles only apply to the current component.
If you want the CSS styles to apply to a child component of the current component,
you need to use the ::deep combinator within your style. This combinator selects the
elements that are descendants of the element's identifier.

For example, the following style will be applied to any H1 headings with the current
component, as well as any H1 headings within the child components of the current
component:

::deep h1 {

 color: red;

}

CSS isolation is useful if you don't want your component to use the global styles or you want
to share your component via a Razor class library and you need to avoid styling conflicts.

Project overview
In this chapter, we will build a modal dialog component. You will be able to customize
both the Title and the Body of the modal dialog using Razor markup.

This is a screenshot of the modal dialog:

Figure 3.3 – Modal dialog

66 Building a Modal Dialog Using Templated Components

Finally, after we have completed the modal dialog component, we will move it to a Razor
class library so that it can be shared with other projects.

The build time for this project is approximately 90 minutes.

Creating the modal dialog project
The ModalDialog project will be created by using the Empty Blazor WebAssembly
App project template. We will add a Dialog component that includes multiple sections,
and use CSS isolation to apply styles that make it behave like a modal dialog. We will use
EventCallback parameters to communicate from the component back to the parent
when a button is clicked. We will use RenderFragment parameters to allow Razor
markup to be communicated from the parent to the component. Finally, we will create a
Razor class library and move our Dialog component to it so that it can be shared with
other projects.

Getting started with the project
We need to create a new Blazor WebAssembly app. We do this as follows:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt + S) textbox, enter Blazor and hit the Enter key.

The following screenshot shows the Empty Blazor WebAssembly App project
template that we created in Chapter 2, Building Your First Blazor WebAssembly
Application:

Figure 3.4 – Empty Blazor WebAssembly App project template

4.	 Select the Empty Blazor WebAssembly App project template and click the
Next button.

Creating the modal dialog project 67

5.	 Enter ModalDialog in the Project name textbox and click the Create button:

Figure 3.5 – Configure your new project dialog

Tip
In the preceding example, we placed the ModalDialog project into the
E:/Blazor folder. However, the location of this project is not important.

We have created the ModalDialog Blazor WebAssembly project.

Adding the Dialog component
The Dialog component will be shared. Therefore, we will add it to the Shared folder.
We do this as follows:

1.	 Right-click the Shared folder and select Add, Razor Component from the menu.

2.	 Name the new component Dialog.

3.	 Click the Add button.

68 Building a Modal Dialog Using Templated Components

4.	 Replace the markup with the following markup:

@if (Show)

{

 <div class="dialog-container">

 <div class="dialog">

 <div class="dialog-title">Title</div>

 <div class="dialog-body">Body</div>

 <div class="dialog-buttons">

 <button class="btn btn-dark mr-2">

 OK

 </button>

 <button class="btn btn-danger">

 Cancel

 </button>

 </div>

 </div>

 </div>

}

@code {

 [Parameter] public bool Show { get; set; }

}

The Show property is used to show and hide the contents of the component. We
have added a Dialog component, but it will not behave like a modal dialog box
until the appropriate styles have been added to the project.

Adding a CSS
The preceding markup includes five classes that we will use to style the Dialog
component to make it behave like a modal dialog:

•	 dialog-container: This class is used to set the background color of the element
to black with 60% opacity and place it on top of the other elements by setting its
z-index to 2,000.

•	 dialog: This class is used to set the background color of the element to white,
center it horizontally within its parent, and set its width to 25 REM.

Creating the modal dialog project 69

•	 dialog-title: This class is used to set the background color to dark gray, set the
text to white, and add some padding.

•	 dialog-body: This class is used to add some padding.

•	 dialog-buttons: This class is used to set the background color to silver and add
some padding.

Tip
The rest of the classes used by the Dialog component, such as btn, are
defined in the wwwroot\css\bootstrap\bootstrap.min.css
file, which contains the styles provided by the Bootstrap framework.

We need to create a CSS file to define how to style each of these classes. We do this
as follows:

1.	 Right-click the Shared folder and select Add, New Item from the menu.

2.	 Enter css in the Search box.

3.	 Select Style Sheet.

4.	 Name the style sheet Dialog.razor.css.

5.	 Click the Add button.

6.	 Enter the following styles:

Dialog.razor.css

.dialog-container {

 position: absolute;

 top: 0;

 bottom: 0;

 left: 0;

 right: 0;

 background-color: rgba(0,0,0,0.6);

 z-index: 2000;

}

.dialog {

 background-color: white;

 margin: auto;

70 Building a Modal Dialog Using Templated Components

 width: 25rem;

}

.dialog-title {

 background-color: #343a40;

 color: white;

 padding: .5rem;

}

.dialog-body {

 padding: 2rem;

}

.dialog-buttons {

 background-color: silver;

 padding: .5rem;

}

The styles in the Dialog.razor.cs file will only be used by the Dialog component
due to CSS isolation.

Testing the Dialog component
In order to test the Dialog component, we need to add it to another component. We will
add it to the Index component that is used as the Home page of the application. We do
this as follows:

1.	 Open the Pages\Index.razor file.

2.	 Add the following markup to the Index.razor file:

<Dialog Show="showDialog"></Dialog>

<button @onclick="OpenDialog">Show Dialog</button>

@code {

 private bool showDialog = false;

 private void OpenDialog()

Creating the modal dialog project 71

 {

 showDialog = true;

 }

}

Make sure you do not remove the @page directive at the top of the file.

3.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

4.	 Click the Show Dialog button:

Figure 3.6 – Simple modal dialog

5.	 Click the OK button.

Nothing happens when you click the OK button because we have not yet added an @
onclick event.

Adding EventCallback parameters
We need to add @onclick events for both the OK button and the Cancel button. We do
this as follows:

1.	 Return to Visual Studio.

2.	 Open the Shared\Dialog.razor file.

3.	 Add @onclick events to each of the buttons:

<button class="btn btn-dark mr-2" @onclick="OnOk">

 OK

</button>

<button class="btn btn-danger" @onclick="OnCancel">

 Cancel

</button>

72 Building a Modal Dialog Using Templated Components

4.	 Add the following parameters to the code block:

[Parameter]

public EventCallback<MouseEventArgs> OnOk { get; set; }

[Parameter]

public EventCallback<MouseEventArgs> OnCancel { get; set;
}

Tip
The Parameter decorator does not need to be on the same line as the
property that it applies to.

5.	 Open the Pages\Index.razor file.

6.	 Update the markup for the Dialog element by adding the highlighted markup:

<Dialog Show="showDialog"

 OnCancel="DialogCancelHandler"

 OnOk="DialogOkHandler">

</Dialog>

7.	 Add the following methods to the code block:

private void DialogCancelHandler(MouseEventArgs e)

{

 showDialog = false;

}

private void DialogOkHandler(MouseEventArgs e)

{

 showDialog = false;

}

8.	 From the Build menu, select the Build Solution option.

9.	 Return to the browser.

10.	 Use Ctrl + R to refresh the browser.

11.	 Click the Show Dialog button.

12.	 Click the OK button.

Creating the modal dialog project 73

The dialog box will close when you click the OK button. Now let's update the Dialog
component to allow us to customize the Title and Body properties of the modal dialog
that it creates.

Adding RenderFragment parameters
We will use RenderFragment parameters for both the Title and Body properties of
the Dialog component. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Shared\Dialog.razor file.

3.	 Update the markup for dialog-title to the following:

<div class="dialog-title">@Title</div>

4.	 Update the markup for dialog-body to the following:

<div class="dialog-body">@Body</div>

5.	 Add the following parameters to the code block:

[Parameter]

public RenderFragment Title { get; set; }

[Parameter]

public RenderFragment Body { get; set; }

6.	 Open the Pages\Index.razor file.

7.	 Update the markup for the Dialog element to the following:

<Dialog Show="showDialog"

 OnCancel="DialogCancelHandler"

 OnOk="DialogOkHandler">

 <Title>Quick List [@(Items.Count + 1)]</Title>

 <Body>

 Enter New Item: <input @bind="NewItem" />

 </Body>

</Dialog>

The preceding markup will change the title of the dialog to Quick List and
provide a textbox for the user to enter items for a list.

74 Building a Modal Dialog Using Templated Components

8.	 Add the following markup under the Dialog element:

 @foreach (var item in Items)

 {

 @item

 }

The preceding code will display the items in the Items list in an ordered list.

9.	 Add the following variables to the top of the code block:

private string NewItem;

private List<string> Items = new List<string>();

10.	 Update DialogCancelHandler to the following:

private void DialogCancelHandler(MouseEventArgs e)

{

 NewItem = "";

 showDialog = false;

}

The preceding code will clear the textbox and hide Dialog.

11.	 Update DialogOkHandler to the following:

private void DialogOkHandler(MouseEventArgs e)

{

 if (!string.IsNullOrEmpty(NewItem))

 {

 Items.Add(NewItem);

 NewItem = "";

 };

 showDialog = false;

}

The preceding code will add NewItem to the Items list, clear the textbox, and
hide Dialog.

12.	 From the Build menu, select the Build Solution option.

13.	 Return to the browser.

Creating the modal dialog project 75

14.	 Use Ctrl + R to refresh the browser.

15.	 Click the Show Dialog button.

16.	 Enter some text in the Enter New Item field.

17.	 Click the OK button.

18.	 Repeat.

Each time that you click the OK button, the text in the Enter New Item field will
be added to the list. The following screenshot shows a list where three items have
already been added and a fourth item is about to be added using the modal dialog:

Figure 3.7 – Sample Quick List

19.	 Close the browser.

To share this new component with other projects, we need to add it to a Razor class library.

Creating a Razor class library
We can share components across projects by using a Razor class library. To create a Razor
class library, we will use the Razor Class Library project template. We do this as follows:

1.	 Right-click the solution and select the Add, New Project option from the menu.

2.	 Enter Razor Class Library in the Search for templates textbox to locate the
Razor Class Library project template:

Figure 3.8 – Razor Class Library project template

3.	 Select the Razor Class Library project template.

76 Building a Modal Dialog Using Templated Components

4.	 Click the Next button.

5.	 Name the project MyComponents and click the Create button.

6.	 Accept the defaults and click the Create button.

7.	 Right-click the ModalDialog project and select the Add, Project Reference
option from the menu.

8.	 Check the MyComponents checkbox and click the OK button.

We have created a sample Razor class library.

Testing the Razor class library
The sample Razor class library that we just created includes one component called
Component1. Before we continue, we should test whether the new Razor class library is
working properly. We do this as follows:

1.	 Open the ModalDialog\Pages\ Index.razor file.

2.	 Add the following @using statement right below the @page directive:

@using MyComponents;

Tip
If you will be using this project on multiple pages, you should add the @using
statement directly to the ModalDialog_Imports.razor file.

3.	 Add the following markup below the @using statement:

<Component1 />

4.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

The following screenshot shows how the Component1 component should render:

Figure 3.9 – Component1

Creating the modal dialog project 77

Important note
If the Component1 component is missing its styling, it is because the CSS
file is cached. Use the following key combination, Ctrl + Shift + R, to empty the
cache and reload the page.

5.	 Return to Visual Studio.

6.	 Delete the Component1 element.

We have finished testing the sample Razor class library.

Adding a component to the Razor class library
In order to share the Dialog component, we need to move it to the Razor class library
that we just created and tested. We do this as follows:

1.	 Right-click the ModalDialog\Shared\Dialog.razor file and select the Copy
option from the menu.

2.	 Right-click the MyComponents project and select the Paste option from the menu.

3.	 Right-click the MyComponents\Dialog.razor file and select the Rename
option from the menu.

4.	 Rename the file to BweDialog.razor.

In this case, Bwe stands for Blazor WebAssembly by Example.

Tip
When naming components in a Razor class library, you should give them
unique names to avoid ambiguous reference errors. Most organizations prefix
all of their shared components with the same text. For example, a company
named One Stop Designs (OSD) might prefix all of their shared components
with Osd.

5.	 Open the ModalDialog\Pages\Index.razor file.

6.	 Rename the Dialog element to BweDialog.

7.	 From the Build menu, select the Build Solution option.

8.	 Return to the browser.

9.	 Use Ctrl + R to refresh the browser.

10.	 Click the Show Dialog button.

78 Building a Modal Dialog Using Templated Components

11.	 Enter some text in the Enter New Item field.

12.	 Click the OK button.

13.	 Repeat.

The BweDialog component is now being used from the MyComponents project. Since
it is now included in the Razor class library, you can easily share it with other projects.

Summary
You should now be able to create a modal dialog and share it with multiple projects by
using a Razor class library.

In this chapter, we introduced RenderFragment parameters, EventCallback
parameters, and CSS isolation.

After that, we used the Empty Blazor App project template to create a new project.
We added a Dialog component that acts like a modal dialog. The Dialog component
uses both RenderFragment parameters and EventCallback parameters to share
information between it and its parent. Also, it used CSS isolation for its styles.

In the last part of the chapter, we created a Razor custom library and moved the Dialog
component to the new library.

So far, in this book, we have avoided using JavaScript. Unfortunately, there are still some
functions that we can only accomplish with JavaScript. We will see how to use JavaScript
interop to use JavaScript in Blazor WebAssembly in the next chapter of this book.

Questions
The following questions are provided for your consideration:

1.	 How can you replace a table with a templated component?

2.	 How would you add default values for the Title property and the Body property
of the Dialog component?

3.	 If you want all of the components in a Razor class library to use the same CSS file,
can you move the styles to a shared CSS file?

4.	 Can you distribute your Dialog component using a NuGet package?

Further reading 79

Further reading
The following resources provide more information concerning the topics in this chapter:

•	 For more information on CSS, refer to https://www.w3schools.com/css/
default.asp.

•	 For more information on lambda expressions, refer to https://docs.
microsoft.com/en-us/dotnet/csharp/language-reference/
operators/lambda-expressions.

•	 For more information on ASP.NET Core Razor components class libraries, refer
to https://docs.microsoft.com/en-us/aspnet/core/blazor/
components/class-libraries.

•	 For more information on NuGet, refer to https://www.nuget.org.

https://www.w3schools.com/css/default.asp
https://www.w3schools.com/css/default.asp
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/lambda-expressions
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/class-libraries
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/class-libraries
https://www.nuget.org

4
Building a Local
Storage Service

Using JavaScript
Interoperability

(JS Interop)
The Blazor WebAssembly framework makes it possible for us to run C# code on the
browser. However, there are some scenarios that it cannot handle, and in those cases,
we need to use JavaScript functions to fill in the gaps.

In this chapter, we will learn how to use JavaScript with Blazor WebAssembly.
We will learn how to invoke a JavaScript function from Blazor with and without a return
value. Conversely, we will learn how to invoke .NET methods from JavaScript. We will
accomplish both of these scenarios by using JavaScript interop (JS interop). Finally,
we will learn how to store data on the browser by using localStorage.

82 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

The project that we will create in this chapter will be a local storage service that will read
and write to the browser's localStorage. In order to access the browser's localStorage,
we will need to use JavaScript. JS interop is used to invoke JavaScript from .NET.

In this chapter, we will cover the following topics:

•	 Why use JavaScript?

•	 Exploring JS interop

•	 Understanding local storage

•	 Invoking a JavaScript function from Blazor

•	 Invoking a .NET method from JavaScript

•	 Creating the local storage service

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free Community Edition of Visual Studio 2019, refer
to Chapter 1, Introduction to Blazor WebAssembly. You will also need the Empty Blazor
WebAssembly App project template that we created in Chapter 2, Building Your First
Blazor WebAssembly Application.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter04.

The code in action video is available here: https://bit.ly/3tXVMeg.

Why use JavaScript?
With Blazor WebAssembly, you can create complete applications without directly using
JavaScript. However, you may need to use JavaScript because there are some scenarios that
you cannot accomplish without it. Without JavaScript, you can't manipulate the DOM
or call any of the JavaScript APIs that we rely on for web development.

This is a sample of the things that you do not have access to directly from the Blazor
WebAssembly framework:

•	 DOM manipulation

•	 The Media Capture and Streams API

•	 The WebGL API (2D and 3D graphics for the web)

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter04
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter04
https://bit.ly/3tXVMeg

Exploring JS interop 83

•	 The Web Storage API (localStorage and sessionStorage)

•	 The Geolocation API

•	 JavaScript pop-up boxes (alert, confirm, prompt)

•	 The online status of the browser

•	 The browser's history

•	 Chart.js

•	 Other third-party JavaScript libraries

The preceding list is not at all comprehensive since there are hundreds of JavaScript
libraries that are currently available. However, the key point to remember is that you cannot
manipulate the DOM without using JavaScript. Therefore, we will probably always need to
use some JavaScript in our web apps. Luckily, by using JS interop, this is easy to do.

Exploring JS interop
To invoke a JavaScript function from .NET, we use the IJSRuntime abstraction. This
abstraction represents an instance of a JavaScript runtime that the framework can call
into. To use IJSRuntime, we must first inject it into our component using dependency
injection. For more information on dependency injection, refer to Chapter 6, Building
a Shopping Cart Using Application State.

The @inject directive is used to inject a dependency into a component. The following
code injects IJSRuntime into the current component:

@inject IJSRuntime js

The IJSRuntime abstraction has two methods that we can use to invoke JavaScript
functions:

•	 InvokeVoidAsync

•	 InvokeAsync

Both of these methods are asynchronous. The difference between these two methods is
that one of them returns a value and the other does not. We can downcast an instance
of IJSRuntime to an instance of IJSInProcessRuntime to run the method
synchronously. Finally, we can invoke a .NET method from JavaScript by decorating the
method with JsInvokable.

84 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

InvokeVoidAsync
The InvokeVoidAsync method is used to invoke a JavaScript function that does not
return a value. It invokes the specified JavaScript function asynchronously.

This is the InvokeVoidAsync method of IJsRuntime:

InvokeVoidAsync(string identifier, params object[] args);

The first argument is the identifier for the JavaScript method that is being called, and
the second argument is an array of JSON-serializable arguments. The second argument
is optional.

In JavaScript, the Document object represents the root node of the HTML document.
The title property of the Document object is used to specify the text that appears in
the browser's title bar. Assume that we want to update the browser's title as we navigate
between the components in our Blazor WebAssembly app. To do that, we need to use
JavaScript to update the title property.

The following JavaScript code defines a method called setDocumentTitle, which sets
the title property of the Document object to the value provided by the title argument:

bweInterop.js

var bweInterop = {};

bweInterop.setDocumentTitle = function (title) {

 document.title = title;

}

Tip
In this book, we will be using the bweInterop namespace for our JavaScript
code to both structure our code and minimize the risk of naming conflicts.

Before we can access the preceding JavaScript code, we need to add a reference to it from
the wwwroot/index.html file. The following highlighted code is a reference to the
JavaScript file. It assumes that it has been placed into a folder called scripts:

<script src="scripts/bweInterop.js"></script>

<script src="_framework/blazor.webassembly.js"></script>

Exploring JS interop 85

The new script tag should be added before the script tag that references the
_framework/blazor.webassembly.js file in the body element of the
wwwroot/index.html file.

The following Document component uses the setDocumentTitle JavaScript function
to update the browser's title bar:

Document.razor

@inject IJSRuntime js

@code {

 [Parameter] public string Title { get; set; }

 protected override async Task OnAfterRenderAsync(bool

 firstRender)

 {

 if (firstRender)

 {

 await js.InvokeVoidAsync(

 "bweInterop.setDocumentTitle",

 Title);

 }

 }

}

In the preceding code, IJSRuntime is injected into the component. Then, the
OnAfterRenderAsync method uses the InvokeVoidAsync method of
IJSRuntime to invoke the setDocumentTitle JavaScript function the first
time that the component is rendered.

The following markup uses the Document component to update the browser's title bar to
Home – My App:

<Document Title="Home - My App" />

86 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

The following screenshot shows the updated document title:

Figure 4.1 – Updated document title

The InvokeVoidSync method is used to call JavaScript functions that do not return
a value. If we need to return a value, we need to use the InvokeAsync method instead.

InvokeAsync
The InvokeAsync method is used when we want to call a JavaScript function that
returns a value. It invokes the specified JavaScript function asynchronously.

This is the InvokeAsync method of IJSRuntime:

ValueTask<TValue> InvokeAsync<TValue>(string identifier,

 params object[] args);

Just like the InvokeVoidAsync method, the first argument is the identifier for the
JavaScript method, and the second argument is an array of JSON-serializable arguments.
The second argument is optional. The InvokeAsync method returns a ValueTask of
the TValue type. TValue is a JSON-deserialized instance of the JavaScript's return value.

In JavaScript, the Window object represents the browser's window. If we need to
determine the width and height of the current window, we can use the innerWidth and
innerHeight properties of the Window object.

The following JavaScript code defines a method called getWindowSize that returns the
width and height of the Window object:

bweInterop.js

var bweInterop = {};

bweInterop.getWindowSize = function () {

 var size = {

 width: window.innerWidth,

 height: window.innerHeight

 }

Exploring JS interop 87

 return size;

}

This is the definition of the WindowSize class that is used to store the size of the window
in .NET:

public class WindowSize

{

 public int? Width { get; set; }

 public int? Height { get; set; }

}

The following Index component invokes the GetWindowSize method from the
bweInterop.js file:

Index.razor

@page "/"

@inject IJSRuntime js

@if (windowSize.Width != null)

{

 <h2>

 Window Size: @windowSize.Width x @windowSize.Height

 </h2>

}

<button @onclick="GetWindowSize">Get Window Size</button>

@code{

 private WindowSize windowSize = new WindowSize();

 private async Task GetWindowSize()

 {

 windowSize = await js.InvokeAsync<WindowSize>(

 "bweInterop.getWindowSize");

 }

}

88 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

In the preceding code, IJSRuntime is injected into the component. When the Get
Window Size button is clicked the GetWindowSize method uses the InvokeAsync
method of IJSRuntime to invoke the getWindowSize JavaScript function. The
GetWindowSize JavaScript function returns the width and height of the window to the
windowSize property. Finally, the component regenerates its render tree and applies any
changes to the browser's DOM.

This is a screenshot of the page after the Get Window Size button has been clicked:

Figure 4.2 – Window size example

Invoking JavaScript from .NET synchronously
So far in this chapter, we have only looked at invoking JavaScript functions
asynchronously. But we can also invoke JavaScript functions synchronously. We do that
by downcasting IJSRuntime to IJSInProcessRuntime. IJSInProcessRuntime
represents an instance of a JavaScript runtime to which calls may be dispatched.

IJSInProcessRuntime allows our .NET code to invoke JS interop calls synchronously.
This can be advantageous because these calls have less overhead than their asynchronous
counterparts. The methods are similar to the asynchronous methods:

•	 InvokeVoid

•	 Invoke

The following code is the synchronous version of the Document component from
earlier in this chapter. It uses IJSInProcessRuntime to invoke the JavaScript
function synchronously:

DocumentSync.razor

@inject IJSRuntime js

@code {

 [Parameter] public string Title { get; set; }

 protected override void OnAfterRender(bool firstRender)

Exploring JS interop 89

 {

 if (firstRender)

 {

 ((IJSInProcessRuntime)js).InvokeVoid(

 "bweInterop.setDocumentTitle",

 Title);

 }

 }

}

In the preceding code, the IJsRuntime instance has been downcast to
an IJSInProcessRuntime instance. The InvokeVoid method of the
IJSInProcessRuntime instance is used to invoke the setDocumentTitle
JavaScript method.

The following markup uses the DocumentSync component:

<DocumentSync Title="Home - My App" />

Invoking .NET from JavaScript
We can invoke a public .NET method from JavaScript by decorating the method with the
JSInvokable attribute.

The following method is decorated with the JSInvokable attribute to enable it to be
invoked from JavaScript:

[JSInvokable]

public void GetWindowSize(WindowSize newWindowSize)

{

 windowSize = newWindowSize;

 StateHasChanged();

}

In the preceding code, the windowSize property is updated each time the
GetWindowSize method is invoked from JavaScript. The component's
StateHasChanged method is called to notify the component that its state has
changed and that the component should be re-rendered.

90 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

Tip
The StateHasChanged method of a component is only called
automatically for EventCallback methods. In other cases, it must be
called manually to notify the UI that it may need to be re-rendered.

To invoke a .NET method from JavaScript, you must create a
DotNetObjectReferenece class for JavaScript to use in order to locate the .NET
method. The DotNetObjectReferenece class wraps a JS interop argument, indicating
that the value should not be serialized as JSON, but instead should be passed as a reference.

Important note
To avoid memory leaks and allow garbage collection on a component that
creates a DotNetObjectReference class, we must diligently dispose of
each instance of DotNetObjectReference.

The following code creates a DotNetObjectReference instance that wraps the
Resize component. The reference is then passed to the JavaScript method:

private DotNetObjectReference<Resize> objRef;

protected async override Task OnAfterRenderAsync(bool
firstRender)

{

 if (firstRender)

 {

 objRef = DotNetObjectReference.Create(this);

 await js.InvokeVoidAsync(

 "bweInterop.registerResizeHandler",

 objRef);

 }

}

You can invoke a method in a .NET component from JavaScript using a reference to
the component created with DotNetObjectReference. In the following JavaScript,
the registerResizeHandler function creates resizeHandler that is called at
initialization, and every time the window is resized.

Exploring JS interop 91

You can use either the invokeMethod or invokeMethodAsync function to
invoke .NET instance methods from JavaScript. The following example uses the
invokeMethodAsync function to invoke the GetWindowSize method that is
decorated with the JSInvokable attribute:

bweInterop.js

bweInterop.registerResizeHandler = function (dotNetObjectRef) {

 function resizeHandler() {

 dotNetObjectRef.invokeMethodAsync('GetWindowSize',

 {

 width: window.innerWidth,

 height: window.innerHeight

 });

 };

 resizeHandler();

 window.addEventListener("resize", resizeHandler);

}

This is the complete .NET code for the Resize component:

Resize.razor

@page "/resize"

@inject IJSRuntime js

@implements IDisposable

@if (windowSize.Width != null)

{

 <h2>

 Window Size: @windowSize.Width x @windowSize.Height

 </h2>

}

@code {

92 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

 private DotNetObjectReference<Resize> objRef;

 private WindowSize windowSize = new WindowSize();

 protected async override Task OnAfterRenderAsync(bool

 firstRender)

 {

 if (firstRender)

 {

 objRef = DotNetObjectReference.Create(this);

 await js.InvokeVoidAsync(

 "bweInterop.registerResizeHandler",

 objRef);

 }

 }

 [JSInvokable]

 public void GetWindowSize(WindowSize newWindowSize)

 {

 windowSize = newWindowSize;

 StateHasChanged();

 }

 public void Dispose()

 {

 objRef?.Dispose();

 }

}

The preceding code for the Resize component displays the current width and height of
the browser. As you resize the browser, the displayed values are automatically updated.
Also, the DotNetObjectReference object is disposed of when the component is
disposed of.

Understanding local storage 93

The IJSRuntime abstraction provides us with a way to invoke JavaScript functions from
.NET and to invoke .NET methods from JavaScript. We will be using the JavaScript's Web
Storage API to complete the project in this chapter. But before we can use it, we need to
understand how it works.

Understanding local storage
The Web Storage API for JavaScript provides mechanisms for browsers to store key/value
pairs. For each web browser, the size of data that can be stored in web storage is at least 5
MB per origin. The localStorage is defined in the Web Storage API for JavaScript. We need
to use JS interop to access localStorage on the browser.

The browser's localStorage is scoped to a particular URL. If the user reloads the page
or closes and re-opens the browser, the contents of localStorage are retained. If the user
opens multiple tabs, each tab shares the same localStorage. The data in localStorage is
retained until it is explicitly cleared since it does not have an expiration date.

Tip
Data in a localStorage object that is created when using an InPrivate window
or Incognito window is cleared when the last tab is closed.

These are the methods of localStorage:

•	 key: This method returns the name of the indicated key based on its position
in localStorage.

•	 getItem: This method returns the value for the indicated key from localStorage.

•	 setItem: This method takes a key and value pair and adds them to localStorage.

•	 removeItem: This method removes the indicated key from localStorage.

•	 clear: This method clears localStorage.

Tip
sessionStorage is also defined in the Web Storage API. Unlike localStorage,
which shares its value between multiple browser tabs, sesssionStorage is scoped
to an individual browser tab. Therefore, if the user reloads the page, the data
persists, but if the user closes the tab (or the browser), the data is cleared.

94 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

To view the content of the browser's localStorage, open Developer tools (F12) and select
the Application tab. Look for Local Storage in the Storage section of the menu on the
left. The following screenshot shows the Application tab of the DevTools dialog:

Figure 4.3 – Local Storage

By using the Web Storage API, it is easy to store data in the browser and to retreive it.
Now, let's get a quick overview of the project that we are going to build in this chapter.

Project overview
In this chapter, we will build a local storage service. The service will both write to and read
from the browser's localStorage. We will use JS interop to accomplish this. Finally, we will
create a component to test our service:

Creating the local storage service 95

Figure 4.4 – Local Storage Service test page

The build time for this project is approximately 60 minutes.

Creating the local storage service
The LocalStorage project will be created by using the Empty Blazor WebAssembly
App project template. First, we will add a JavaScript file with the JavaScript functions
that our service will need to use to update the browser's localStorage. Next, we will create
the interface and class with the .NET methods that will invoke the JavaScript functions.
Finally, we will test our service.

Creating the local storage service project
We need to create a new Blazor WebAssembly app. We do this as follows:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt+S) textbox, enter Blazor and hit the Enter key.

The following screenshot shows the Empty Blazor WebAssembly App
project template that we created in Chapter 2, Building Your First Blazor
WebAssembly Application:

Figure 4.5 – Empty Blazor WebAssembly App project template

4.	 Select the Empty Blazor WebAssembly App project template and click the
Next button.

96 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

5.	 Enter LocalStorage in the Project name textbox and then click the
Create button:

Figure 4.6 – Configure your new project dialog

Tip
In the preceding example, we placed the LocalStorage project into the
E:/Blazor folder. However, the location of this project is not important.

We have now created the LocalStorage Blazor WebAssembly project.

Creating the local storage service 97

Writing JavaScript to access localStorage
We need to write the JavaScript functions that will read to and write from the browser's
localStorage. We do this as follows:

1.	 Right-click the wwwroot folder and select the Add, New Folder option from
the menu.

2.	 Name the new folder scripts.

3.	 Right-click the scripts folder and select the Add, New Item option from the menu.

4.	 Enter javascript in the Search box.

5.	 Select JavaScript File.

6.	 Name the file bweInterop.js.

7.	 Click the Add button.

8.	 Enter the following JavaScript:

var bweInterop = {};

bweInterop.setLocalStorage = function (key, data) {

 localStorage.setItem(key, data);

}

bweInterop.getLocalStorage = function (key) {

 return localStorage.getItem(key);

}

9.	 Open the wwwroot\index.html file.

10.	 Add the following reference within the body element:

<script src="scripts/bweInterop.js"></script>

11.	 Make sure you add it before the reference to _framework/blazor.
webassembly.js.

98 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

Adding the ILocalStorageService interface
We need to create an interface for our service. We do this as follows:

1.	 Right-click the LocalStorage project and select the Add, New Folder option
from the menu.

2.	 Name the new folder Services.

3.	 Right-click the Services folder and then select the Add, New Item option from
the menu.

4.	 Enter interface in the Search box.

5.	 Select Interface.

6.	 Name the file ILocalStorageService.

7.	 Click the Add button.

8.	 Update ILocalStorageService with the following highlighted code:

interface ILocalStorageService

{

 Task SetItemAsync<T>(string key, T item);

 Task<T> GetItemAsync<T>(string key);

}

Creating the LocalStorageService class
We need to create a new class based on the interface we just created. We do this as follows:

1.	 Right-click the Services folder and select the Add, Class option from the menu.

2.	 Name the new class LocalStorageService.

3.	 Update the code to the LocalStorageService class to inherit from
ILocalStorageSerivce:

public class LocalStorageService : ILocalStorageService

{

}

4.	 Right-click ILocalStorageService and select the Implement interface option
from the menu.

Creating the local storage service 99

5.	 Add the following code to the LocalStorageService class:

private IJSRuntime js;

public LocalStorageService(IJSRuntime JsRuntime)

{

 js = JsRuntime;

}

The preceding code defines the constructor for the LocalStorageService class.

6.	 Add the following using statement:

using Microsoft.JSInterop;

7.	 Update the SetItemAsync method to the following:

public async Task SetItemAsync<T>(string key, T item)

{

 await js.InvokeVoidAsync(

 "bweInterop.setLocalStorage",

 key,

 JsonSerializer.Serialize(item));

}

The SetItemAsync method invokes the bweInterop.setLocalStorage
JavaScript function with a key and a serialized version of the item to be stored
in localStorage.

8.	 Add the following using statement:

using System.Text.Json;

9.	 Update the GetItemAsync method to the following:

public async Task<T> GetItemAsync<T>(string key)

{

 var json = await js.InvokeAsync<string>(

 "bweInterop.getLocalStorage",

 key);

 return string.IsNullOrEmpty(json)

 ? default

100 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

 : JsonSerializer.Deserialize<T>(json);

}

The GetItemAsync method invokes the bweInterop.getLocalStorage
JavaScript function with a key. If bweInterop.getLocalStorage returns
a value, that value is deserialized and returned.

We have completed our service. Now we need to test it.

Writing to localStorage
We need to test writing to the browser's localStorage using our local storage service.
We do this as follows:

1.	 Open the Pages\Index.razor file.

2.	 Add the following markup:

@using LocalStorage.Services

@inject IJSRuntime js

<h2>Local Storage Service</h2>

<div>

 Data:

 <input type="text"

 @bind-value="data"

 size="50" />

</div>

<div class="pt-2">

 <button class="btn btn-primary"

 @onclick="SaveToLocalStorageAsync">

 Save to Local Storage

 </button>

</div>

@code {

}

The preceding markup adds a textbox for the data to be saved to the browser's
localStorage and a button that is used to call the SaveToLocalStorageAsync
method.

Creating the local storage service 101

3.	 Add the following code to the code block:

private string data;

private LocalStorageService localStorage;

protected override void OnInitialized()

{

 localStorage = new LocalStorageService(js);

}

async Task SaveToLocalStorageAsync()

{

 await localStorage.SetItemAsync<string>(

 "localStorageData",

 data);

}

The preceding code initializes the component and defines the
SaveToLocalStorageAsync method. The SaveToLocalStorageAsync
method uses localStorageData as the key when saving the data to localStorage.

From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project:

Figure 4.7 – Local Storage Service test page

4.	 Enter the word Test into the Data textbox.

5.	 Click the Save to Local Storage button.

6.	 Click F12 to open the Developer Tools.

7.	 Select the Application tab.

8.	 Open Local Storage.

102 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

The following screenshot shows the value of localStorageData:

Figure 4.8 – Local storage

We have used the Local Storage API to save data to the browser's localStorage. Next,
we need to learn how to read from the browser's localStorage.

Reading from localStorage
We need to test reading from the browser's localStorage using our local storage service.
We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Pages\Index.razor file.

3.	 Add the following button beneath the existing button:

<button class="btn btn-primary"

 @onclick="ReadFromLocalStorageAsync">

 Read from Local Storage

</button>

The preceding markup adds a button used to call the
ReadFromLocalStorageAsync method.

4.	 Add the following method to the code block:

async Task ReadFromLocalStorageAsync()

{

 data = await localStorage.GetItemAsync<string>(

 "localStorageData");

}

Summary 103

The preceding code defines the ReadFromLocalStorageAsync method.
ReadFromLocalStorageAsync uses the localStorageData key when
accessing the browser's localStorage.

5.	 From the Build menu, select the Build Solution option.

6.	 Return to the browser.

7.	 Use Ctrl + R to refresh the browser.

8.	 Click the Read from Local Storage button.

We have now completed the testing of our local storage service.

Summary
You should now be able to create a local storage service by using JS interop to invoke
JavaScript functions from your Blazor WebAssembly application.

In this chapter, we explained why you still need to use JavaScript and how to use the
IJSRuntime abstraction to invoke JavaScript functions from .NET, both synchronously
and asynchronously. Conversely, we explained how to invoke .NET methods from
JavaScript. Finally, we explained how to store data in the browser by using localStorage.

After that, we used the Empty Blazor App project template to create a new project.
We added a couple of JavaScript functions to read and write localStorage. Then, we added
a class to invoke those JavaScript functions.

In the last part of the chapter, we tested our local storage service.

One of the biggest benefits of using Blazor WebAssembly is that all of the code runs on the
browser. This means that a web app built using Blazor WebAssembly can run offline. In
the next chapter, we will leverage this benefit to create a progressive web app.

Questions
The following questions are provided for your consideration:

1.	 Can IJSRuntime be used to render a UI?

2.	 How would you add our local storage service to a Razor class library?

3.	 In what scenarios would you use sessionStorage rather than localStorage?

4.	 Is localStorage secure?

5.	 How do you verify that the browser supports localStorage and that it is available for use?

104 Building a Local Storage Service Using JavaScript Interoperability (JS Interop)

Further reading
The following resources provide more information regarding the topics covered in
this chapter:

•	 For more information on using JavaScript, refer to https://www.w3schools.
com/js.

•	 For more detailed information on JavaScript, refer to https://developer.
mozilla.org/en-US/docs/Web/javascript.

•	 For the JavaScript reference, refer to https://developer.mozilla.org/
en-US/docs/Web/JavaScript/Reference.

•	 For more information on localStorage, refer to https://www.w3.org/TR/
webstorage/#the-localstorage-attribute.

•	 For more information on the Storage Living Standard, refer to
https://storage.spec.whatwg.org.

•	 For more information on Microsoft Edge (Chromium) Developer Tools, refer to
https://docs.microsoft.com/en-us/microsoft-edge/devtools-
guide-chromium.

https://www.w3schools.com/js
https://www.w3schools.com/js
https://developer.mozilla.org/en-US/docs/Web/javascript
https://developer.mozilla.org/en-US/docs/Web/javascript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://www.w3.org/TR/webstorage/#the-localstorage-attribute
https://www.w3.org/TR/webstorage/#the-localstorage-attribute
https://storage.spec.whatwg.org
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium
https://docs.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium

5
Building a Weather

App as a Progressive
Web App (PWA)

As web developers, we develop amazing web apps of all kinds, but until recently there has
been a divide between what a web app can do versus what a native app can do. A new class
of apps called Progressive Web Apps (PWAs) is helping to bridge that divide by enabling
native-like capabilities, reliability, and installability in our web apps. A PWA is a web
application that takes advantage of native app features while retaining all of the features of
a web app.

In this chapter, we will learn what defines a PWA, as well as how to create a PWA by
adding a manifest file and a service worker to an existing web application.

The project that we create in this chapter will be a local 5-day weather forecast
application that can be installed and run as a native application on Windows, Macs,
iPhones, Android phones, and so on and can be distributed through the various app
stores. We will use JavaScript's Geolocation API to obtain the location of the device
and use the OpenWeather One Call API to fetch the weather forecast for that location.
We will convert the application into a PWA by adding a manifest file and a service worker.
The service worker will use the CacheStorage API to cache information so that the PWA
can work offline.

106 Building a Weather App as a Progressive Web App (PWA)

In this chapter, we will cover the following topics:

•	 Understanding PWAs

•	 Working with manifest files

•	 Working with service workers

•	 Using the CacheStorage API

•	 Using the Geolocation API

•	 Using the OpenWeather One Call API

•	 Creating a PWA

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free Community Edition of Visual Studio 2019, refer
to Chapter 1, Introduction to Blazor WebAssembly. You will also need the Empty Blazor
WebAssembly App project template that we created in Chapter 2, Building Your First
Blazor WebAssembly Application.

We will be using an external weather API to access the weather forecast data for our
project. The API that we will be using is the OpenWeather One Call API for getting
current, forecasted, and historical weather data. This is a free API that is provided by
OpenWeather (https://openweathermap.org). In order to get started with this
API, you need to create an account and obtain an API key. If you do not want to create
an account, you can use the weather.json file that we have provided in the GitHub
repository for this chapter.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter05.

The code in action video is available here: https://bit.ly/3u2CrbX.

https://openweathermap.org
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter05
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter05
https://bit.ly/3u2CrbX

Understanding PWAs 107

Understanding PWAs
A PWA is a web app that uses modern web capabilities to deliver an app-like experience
to users. They look and feel like a native application because they run in their own app
window instead of the browser's window, and they can be launched from the Start menu
or taskbar. PWAs offer an offline experience and load instantly due to their use of caching.
They can receive push notifications and are automatically updated in the background.
Finally, although they do not require a listing in an app store for distribution, they can be
distributed through the app stores.

Many large companies such as Pinterest, Starbucks, Trivago, and Twitter have embraced
PWAs. Companies are drawn to PWAs because they can develop them once and use them
everywhere.

A PWA feels like a native application due to a combination of technologies. In order
to convert a web app into a PWA, it must use HyperText Transfer Protocol Secure
(HTTPS) and include both a manifest file and a service worker.

HTTPS
To be converted into a PWA, the web app must use HTTPS and must be served over
a secure network. This should not be a problem since most browsers will no longer
serve pages over HTTP. Therefore, even if you are not planning to convert a Blazor
WebAssembly app into a PWA, you should always be using HTTPS.

Tip
A Secure Sockets Layer (SSL) certificate is required to enable HTTPS. A great
source for free SSL certificates is Let's Encrypt (https://letsencrypt.
org). It is a free, automated, and open Certificate Authority (CA).

Manifest files
A manifest file is a simple JavaScript Object Notation (JSON) document that contains
an application's name, defaults, and startup parameters for when a web application is
launched. It describes how an application looks and feels.

This is an example of a simple manifest file:

{

 "name": "My Sample PWA",

 "display": "standalone",

 "background_color": "#ffffff",

https://letsencrypt.org
https://letsencrypt.org

108 Building a Weather App as a Progressive Web App (PWA)

 "theme_color": "#03173d",

 "icons": [

 {

 "src": "icon-512.png",

 "type": "image/png",

 "sizes": "512x512"

 }

]

}

A manifest file must include the name of the application and at least one icon. We will
look more closely at manifest files in the next section.

Service workers
A service worker is a JavaScript file that defines the offline experience for the PWA.
It intercepts and controls how a web browser handles its network requests and asset
caching.

This is the content of the service-worker.js file that is included in the Blazor
WebAssembly PWA project template provided by Microsoft:

self.addEventListener('fetch', () => { });

It is only one line of code and—as you can see—it does not actually do anything, but it
currently counts as a service worker and is all that is technically needed to convert an
application into a PWA. We will take a closer look at more robust service workers later in
this chapter.

A PWA is a web app that can be installed on a device like a native application. If a web app
uses HTTPS and includes a manifest file and a service worker, it can be converted into
a PWA. Let's take a closer look at manifest files.

Working with manifest files
A manifest file provides information about an app in JSON format. It is usually in the
root folder of an application. The following code snippet shows how to add a manifest file
named manifest.json to the index.html file:

<link href="manifest.json" rel="manifest" />

Working with manifest files 109

Here is a sample manifest file that includes many possible fields:

{

 "dir": "ltr",

 "lang": "en",

 "name": " 5-Day Weather Forecast",

 "short_name": "Weather",

 "scope": "/",

 "display": "standalone",

 "start_url": "./",

 "background_color": "transparent",

 "theme_color": "transparent",

 "description": "This is a 5-day weather forecast.",

 "orientation": "any",

 "related_applications": [],

 "prefer_related_applications": false,

 "icons": [

 {

 "src": "icon-512.png",

 "type": "image/png",

 "sizes": "512x512"

 }

],

 "url": "https://bweweather.azurewebsites.net",

 "screenshots": []

}

As mentioned earlier, a manifest file must include the name of the application and at least
one icon. Beyond that, everything else is optional, although is it highly recommended that
you include description, short_name, and start_url as a minimum.

These are the keys in the manifest.json file:

•	 dir: The base direction of the name, short_name, and description. It is
either ltr, rtl, or auto.

•	 lang: The primary language of the name, short_name, and description.

•	 name: The name of the app. The maximum length is 45 characters.

•	 short_name: The short name of the app. The maximum length is 12 characters.

110 Building a Weather App as a Progressive Web App (PWA)

•	 scope: The navigation scope of the app.

•	 display: The way the app is displayed, set to fullscreen, standalone,
minimal-UI, or browser.

•	 start_url: The Uniform Resource Locator (URL) of the app.

•	 background_color: The color used for the app's background during installation
on the splash screen.

•	 theme_color: The default theme color.

•	 description: A short description of the app.

•	 orientation: The default screen orientation, set to any, landscape,
or portrait.

•	 related_applications: Any related apps that the developer wishes to
highlight. These are usually native apps.

•	 prefer_related_applications: A value notifying the user agent that the
related application is preferred over a web app.

•	 icons: One or more images used by the app.

•	 url: The address of the app.

•	 screenshots: An array of images of the app in action.

The largest section of the manifest.json file is often the list of images. The reason for
this is that many devices prefer images of different sizes.

Tip
An easy way to quickly generate many different sizes of the same image
is to use the Image Generator tool on the PWABuilder website, found at
https://www.pwabuilder.com/generate.

A manifest file controls how the PWA appears to the user and is required in order to
convert a web app into a PWA. A service worker is also required to convert a web app into
a PWA. Let's take a closer look at service workers.

https://www.pwabuilder.com/generate

Working with service workers 111

Working with service workers
Service workers provide the magic behind PWAs. They are used for caching, background
syncing, and push notifications. A service worker is a JavaScript file that intercepts and
modifies navigation and resource requests. It gives us full control over which resources are
cached and how our PWA behaves in different situations.

A service worker is simply a script that your browser runs in the background. It is separate
from the app and has no Document Object Model (DOM) access. It runs on a different
thread than the thread used by the main JavaScript that powers your app, so it is not
blocking. It is designed to be fully asynchronous.

Service worker life cycle
When working with service workers, it is very important to understand their life cycle
because offline support can add a significant amount of complexity to the web app. There
are three steps in the life cycle of a service worker—install, activate, and fetch, as illustrated
in the following diagram:

Figure 5.1 – Service worker life cycle

Install
During the install step, the service worker usually caches some of the static assets of the
website, such as a You are offline splash screen. If the files are cached successfully, the
service worker is installed. However, if any of the files fail to download and cache, the
service worker is not installed and does not move to the activate step.

If the service worker does not successfully install, it will try to install the next time the
web app is run. Therefore, the developer can be assured that if the service worker has been
successfully installed, the cache contains all of the static assets that were designated to be
cached. After the install step is successfully completed, the activate step is initiated.

112 Building a Weather App as a Progressive Web App (PWA)

Activate
During the activate step, the service worker handles the management of the old caches.
Since a previous install may have created a cache, this is our opportunity to delete it. After
the activate step is successfully completed, the service worker is ready to begin processing
the fetch events.

Fetch
During the fetch step, the service worker controls all of the pages that fall under its scope.
It will handle the fetch events that occur when a network request is made from the PWA.
The service worker will continue to fetch until it is terminated.

Updating a service worker
In order to update the service worker that is running for our website, we need to update
the service worker's JavaScript file. Each time a user navigates to our site, the browser
downloads the current service worker and compares it with the installed service worker.
If they are different, it will attempt to replace the old service worker.

However, this does not happen immediately. The new service worker has to wait until
the old service worker is no longer in control before it can be activated. The old service
worker will remain in control until all of the open pages are closed. When the new service
worker takes control, its activate event will fire.

Cache management is handled during the activate callback. The reason we manage
the cache during the activate callback is that if you were to wipe out any old caches in
the install step, the old service worker (which has control of all the current pages) would
suddenly stop being able to serve files from that cache.

The following screenshot shows a service worker that is waiting to activate:

Working with service workers 113

Figure 5.2 – Service worker waiting to activate

Tip
The service worker will not be activated until the user has navigated away from
the app in all tabs. Reloading the tab will not suffice. However, you can activate
a service worker that is waiting to activate by clicking the skipWaiting link.

Types of service workers
There are many different types of service workers, from the ridiculously simple to the
more complex. The following diagram shows some of the different types of service
workers, ordered from simple to complex:

Figure 5.3 – Types of service workers

114 Building a Weather App as a Progressive Web App (PWA)

Offline page
This is the simplest type of functioning service worker to create. All we need in order to
create this type of service worker is a HyperText Markup Language (HTML) page that
indicates an application is offline. Whenever an application is unable to connect to
a network, we simply display that HTML page.

Offline copy of pages
With this type of service worker, we store a copy of each page in the cache as our visitors
view them. When an application is offline, it serves the pages from the cache. This
approach may only work for applications with a limited number of pages because, if
a page that a user wants to view has not yet been viewed by that user, it will not yet be in
the cache and the app will fail.

Offline copy with offline page
This type of service worker is an improved version of the offline copy of pages service
worker. It combines the two previous types of service workers. With this type of service
worker, we store a copy of each page in the cache as our visitors view them. When an
application is offline, it serves the pages from the cache. If a page that a user wants to view
is not in the cache, we display the HTML page that indicates the application is offline.

Cache-first network
This type of service worker always uses the cache first. If the requested page is in the
cache, it serves that page before it requests the page from the server and updates the cache
with the new page. Using this service worker, we always serve the version of the page that
is in the cache before requesting the page from the server, thus users are served the same
data whether they are online or offline.

Tip
A cache-first network service worker type is preferred by Microsoft.

Advanced caching
This type of service worker is a combination of each of the preceding types. With this type
of service worker, we designate different files and routes to be cached using different rules.
For example, some data such as stock prices should never be cached, while other data that
does not change very often should be cached.

Using the CacheStorage API 115

Background sync
This is the most complex type of service worker. It allows a user to continue to use an
application to add and edit data when they are offline. Then, when they are back online,
the application will sync their data with the network.

This is not a complete list of all of the different types of service workers that are available.
However, it should give you an idea of the power and flexibility of service workers and the
importance of caching. All of the service workers on our list rely on the CacheStorage API
for caching.

Using the CacheStorage API
The CacheStorage API is used to cache request/response object pairs where the
request objects are the keys and the response objects are the values. It was designed
to be used by service workers to provide offline functionality. A caches object is an
instance of CacheStorage. It is a global object that is located in the window object.

We can use the following code to test if it is available on the browser:

 const hasCaches = 'caches' in self;

A caches object is used to maintain a list of caches for a particular web app. Caches
cannot be shared with other web apps and they are isolated from the browser's HTTP
cache. They are entirely managed through the JavaScript that we write.

These are some of the methods of CacheStorage:

•	 delete(cacheName): This method deletes the indicated cache and returns
true. If the indicated cache is not found, it returns false.

•	 has(cacheName): This method returns true if the indicated cache exists, and
false otherwise.

•	 keys: This method returns a string array of the names of all of the caches.

•	 open(cacheName): This method opens the indicated cache. If it does not exist,
it is created and then opened.

116 Building a Weather App as a Progressive Web App (PWA)

When we open an instance of CacheStorage, a Cache object is returned. These are some
of the methods of a Cache object:

•	 add(request): This method takes a request and adds the resulting response to
the cache.

•	 addAll(requests): This method takes an array of requests and adds all of the
resulting responses to the cache.

•	 delete(request): This method returns true if it is able to find and delete the
indicated request, and false otherwise.

•	 keys(): This methods returns an array of keys.

•	 match(request): This method returns a response associated with the matching
request.

•	 put(request, response): This method adds the request and response pair to
the cache.

Tip
A Cache object does not get updated unless we explicitly request it to be
updated. Also, these objects do not expire. We need to delete them as they
become obsolete.

Service workers use the CacheStorage API to allow the PWA to continue to function when
it is offline. Next, we will explain how to use the Geolocation API.

Using the Geolocation API
The Geolocation API for JavaScript provides a mechanism for us to obtain the location
of a user. Using the Geolocation API, we can obtain the coordinates of a device that the
browser is running on.

The Geolocation API is accessed through a navigator.geolocation object. When
we make a call to the navigator.geolocation object, the user's browser asks the
user for permission to access their location. If they accept, the browser uses the device's
positioning hardware, such as the Global Positioning System (GPS) on a smart phone, to
determine its location.

Using the Geolocation API 117

Before we attempt to use the navigator.geolocation object, we should verify that
it is supported by the browser. The following code tests for the presence of geolocation
support on the browser:

if (navigator.geolocation) {

 var position = await getPositionAsync();

} else {

 throw Error("Geolocation is not supported.");

};

For the project in this chapter, we will be using the getCurrentPosition method to
retrieve the device's location. This method takes two callback functions. The success
callback function returns a GeolocationPosition object, while the error callback
function returns a GeolocationPositionError object. If the user denies us access to
their position, it will be reported in the GeolocationPositionError object.

These are the properties of the GeolocationPosition object:

•	 coords.latitude: This property returns a double that represents the latitude of
the device.

•	 coords.longitude: This property returns a double that represents the longitude
of the device.

•	 coords.accuracy: This property returns a double that represents the accuracy
of the latitude and the longitude, expressed in meters.

•	 coords.altitude: This property returns a double that represents the altitude of
the device.

•	 coords.altitudeAccuracy: This property returns a double that represents the
accuracy of the altitude, expressed in meters.

•	 coords.heading: This property returns a double that represents the direction in
which the device is facing, expressed in degrees.

•	 coords.speed: This property returns a double that represents the speed of the
device, expressed in meters per second.

•	 timestamp: This property returns the date and time of the response.

118 Building a Weather App as a Progressive Web App (PWA)

The GeolocationPosition object always returns the coords.latitude, coords.
longitude, coords.accuracy, and timestamp properties. The other properties are
only returned if they are available.

By using JavaScript's Geolocation API, we can determine the latitude and longitude of
a device. We need this information in order to use the OpenWeather One Call API to
request a local weather forecast for our project.

Using the OpenWeather One Call API
The data source for the project in this chapter is a free API provided by OpenWeather.
It is called the OpenWeather One Call API (https://openweathermap.org/api/
one-call-api). This API is able to return current, forecast, and historical weather data.
We will be using it to access the local forecast for the next 5 days. This is the format of an
API call using the OpenWeather One Call API:

https://api.openweathermap.org/data/2.5/
onecall?lat={lat}&lon={lon}&appid={API key}

These are the parameters for the OpenWeather One Call API:

•	 lat: Latitude. This parameter is required.

•	 lon: Longitude. This parameter is required.

•	 appid: API key. This parameter is required. It is on the Accounts page under the
API key tab.

•	 units: Units of measurement. This is set as Standard, Metric, or Imperial.

•	 exclude: Excluded data. This is used to simplify data that is returned. Since
we will only be using the daily forecast, we will exclude current, minutely, and
hourly data, and alerts for our project. This is a comma-delimited list.

•	 lang: Language of the output.

This is a fragment of the response from the OpenWeather One Call API:

weather.json fragment

{

 "dt": 1616436000,

 "sunrise": 1616416088,

 "sunset": 1616460020,

https://openweathermap.org/api/one-call-api
https://openweathermap.org/api/one-call-api

Using the OpenWeather One Call API 119

 "temp": {

 "day": 58.5,

 "min": 54.75,

 "max": 62.6,

 "night": 61.29,

 "eve": 61.25,

 "morn": 54.75

 },

 "feels_like": {

 "day": 49.69,

 "night": 51.91,

 "eve": 50.67,

 "morn": 47.03

 },

 "pressure": 1011,

 "humidity": 85,

 "dew_point": 54.01,

 "wind_speed": 17.83,

 "wind_deg": 168,

 "weather": [

 {

 "id": 502,

 "main": "Rain",

 "description": "heavy intensity rain",

 "icon": "10d"

 }

],

 "clouds": 98,

 "pop": 1,

 "rain": 27.91,

 "uvi": 2.34

},

120 Building a Weather App as a Progressive Web App (PWA)

In the preceding JSON fragment, we have highlighted the fields that we are using in this
chapter's project.

The OpenWeather One Call API is a simple API that we will be using to obtain the daily
forecast for a given location. Now, let's get a quick overview of the project that we are
going to build in this chapter.

Project overview
In this chapter, we will build a Blazor WebAssembly app to display a local 5-day weather
forecast and then convert it into a PWA.

The web app we will build uses JavaScript's Geolocation API to determine the current
latitude and longitude of the device. It uses the OpenWeather One Call API to obtain
the local weather forecast and uses a variety of Razor components to display the weather
forecast to the user. After we have completed the web app, we will convert it into a PWA
by adding a logo, a manifest file, and a service worker. Finally, we will install, run, and
uninstall the PWA.

This is a screenshot of the completed application:

Figure 5.4 – WeatherForecast application

The build time for this project is approximately 120 minutes.

Creating a PWA 121

Creating a PWA
A WeatherForecast project will be created by using the Empty Blazor WebAssembly
App project template. First, we will use JS interop with the Geolocation API to obtain the
coordinates of the device. We will then use the OpenWeather One Call API to obtain a
weather forecast for those coordinates. Next, we will create a couple of Razor components
to display the forecast.

In order to convert the web app into a PWA, we will add a logo, a manifest file, and an
offline page service worker. After testing the service worker, we will install, run, and
uninstall the PWA.

Getting started with the project
We need to create a new Blazor WebAssembly app. We will do this by following
these steps:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt + S) textbox, enter blazor and hit the Enter key.

The following screenshot shows the Empty Blazor WebAssembly App project
template that we created in Chapter 2, Building Your First Blazor WebAssembly
Application:

Figure 5.5 – Empty Blazor WebAssembly App project template

4.	 Select the Empty Blazor WebAssembly App project template and click the Next
button.

122 Building a Weather App as a Progressive Web App (PWA)

5.	 Enter WeatherForecast in the Project name textbox and click the Create
button, as illustrated in the following screenshot:

Figure 5.6 – Configure your new project dialog

Tip
In the preceding example, we placed the WeatherForecast project into
the E:/Blazor folder. However, the location of this project is not important.

We have now created a WeatherForecast Blazor WebAssembly project.

Adding a JavaScript function
We now need to add a class to contain our current latitude and longitude. We will do this
by following these steps:

1.	 Right-click the wwwroot folder and select the Add, New Folder option from
the menu.

2.	 Name the new folder scripts.

Creating a PWA 123

3.	 Right-click the scripts folder and select the Add, New Item option from
the menu.

4.	 Enter javascript in the Search box.

5.	 Select JavaScript File.

6.	 Name the file bweInterop.js.

Tip
In this book, we will be using the bweInterop namespace for our JavaScript
code to both structure our code and minimize the risk of naming conflicts.

7.	 Click the Add button.

8.	 Enter the following JavaScript:

var bweInterop = {};

bweInterop.getPosition = async function () {

 function getPositionAsync() {

 return new Promise((success, error) => {

 navigator.geolocation.
getCurrentPosition(success, error);

 });

 }

 if (navigator.geolocation) {

 var position = await getPositionAsync();

 var coords = {

 latitude: position.coords.latitude,

 longitude: position.coords.longitude

 };

 return coords;

 } else {

 throw Error("Geolocation is not supported by

 this browser.");

 };

}

124 Building a Weather App as a Progressive Web App (PWA)

The preceding JavaScript code uses the Geolocation API to return the latitude and
longitude of the device. If it is not allowed or it is not supported, an error is thrown.

9.	 Open the wwwroot\index.html file.

10.	 Add the following reference toward the bottom of the body element:

<script src="scripts/bweInterop.js"></script>

You should add it right before the reference to _framework/blazor.
webassembly.js.

We have created a JavaScript function that uses the Geolocation API to return
our current latitude and longitude. Next, we need to invoke it from our web app.

Using the Geolocation API
We need to invoke our bweInterop.getPosition function from our web app.
We will do this by following these steps:

1.	 Right-click the WeatherForecast project and select the Add, New Folder option
from the menu.

2.	 Name the new folder Models.

3.	 Right-click the Models folder and select the Add, Class option from the menu.

4.	 Name the new class Position.

5.	 Add the following highlighted properties to the Position class:

public class Position

{

 public double Latitude { get; set; }

 public double Longitude { get; set; }

}

This is the class that we will use to store our coordinates.

6.	 Open the Pages\Index.razor file.

Creating a PWA 125

7.	 Add the following markup:

@using WeatherForecast.Models

@inject IJSRuntime js

@if (pos == null)

{

 <p>@message</p>

}

else

{

 <h2>Latitude: @pos.Latitude, Longitude:

 @pos.Longitude </h2>

}

@code {

 string message = "Loading...";

 Position pos;

}

The preceding markup displays a message if the pos property is null. Otherwise,
it displays the latitude and longitude from the pos property.

8.	 Add the following OnInitializedAsync method to the @code block:

protected override async Task OnInitializedAsync()

{

 try

 {

 await GetPosition();

 }

 catch (Exception)

 {

 message = "Geolocation is not supported.";

 };

}

The preceding code attempts to get our coordinates when the page initializes.

126 Building a Weather App as a Progressive Web App (PWA)

9.	 Add the following GetPosition method to the @code block:

private async Task GetPosition()

{

 pos = await js.InvokeAsync<Position>(

 "bweInterop.getPosition");

}

The preceding code uses JS interop to invoke the JavaScript function that we wrote
that uses the Geolocation API to return our coordinates. For more information
on JS interop, refer to Chapter 4, Building a Local Storage Service Using JavaScript
Interoperability (JS Interop).

10.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

The following screenshot is an example of the dialog that will ask you for permission
to access your location:

Figure 5.7 – Geolocation permission dialog

11.	 Click the Allow button to allow the app to have access to your location.

The following screenshot is of the updated Home page:

Figure 5.8 – Home page displaying coordinates

Creating a PWA 127

You can disable the app's ability to access your location by using the Location access
allowed dialog that is shown in the following screenshot:

Figure 5.9 – Location access allowed dialog

The Location access allowed dialog is accessed via the highlighted button on the
browser's toolbar. You may want to toggle the permissions to see how that impacts
the app.

Tip
To change a URL's permission to access your location, select Settings from the
browser's menu. Then, select Site Settings from the Privacy and security area.
Finally, search for the URL that you are using, select it, and change the value of
the Location field to one of the following: Ask (default), Allow, or Block.

We have used the Geolocation API to display our latitude and longitude on the Home
page. Next, we need to provide those coordinates to the OpenWeather One Call API.

128 Building a Weather App as a Progressive Web App (PWA)

Adding a Forecast class
We need to add a Forecast class to capture the results from the OpenWeather One Call
API. We will do this by following these steps:

1.	 Return to Visual Studio.

2.	 Right-click the Models folder and select the Add, Class option from the menu.

3.	 Name the new class OpenWeather.

4.	 Add the following classes:

public class OpenWeather

{

 public Daily[] Daily { get; set; }

}

public class Daily

{

 public long Dt { get; set; }

 public Temp Temp { get; set; }

 public Weather[] Weather { get; set; }

}

public class Temp

{

 public double Min { get; set; }

 public double Max { get; set; }

}

public class Weather

{

 public string Description { get; set; }

 public string Icon { get; set; }

}

The preceding classes will be used with the OpenWeather One Call API.

Creating a PWA 129

Adding a DailyForecast component
We need a component to display each day's forecast. We will do this by following
these steps:

1.	 Right-click the Shared folder and select the Add, Razor Component option from
the menu.

2.	 Name the new component DailyForecast.

3.	 Replace the existing markup with the following markup:

<div class="card text-center">

 <div class="card-header">

 @Date

 </div>

 <div class="card-body">

 <h4 class="card-title">@Description</h4>

 @((int)HighTemp) F° /

 @((int)LowTemp) F°

 </div>

</div>

@code {

}

This component uses the Card component from Bootstrap to display the
daily forecast. For more information on the Card component, see https://
getbootstrap.com/docs/5.0/components/card.

4.	 Add the following code to the @code block:

[Parameter] public long Seconds { get; set; }

[Parameter] public double HighTemp { get; set; }

[Parameter] public double LowTemp { get; set; }

[Parameter] public string Description { get; set; }

[Parameter] public string Icon { get; set; }

private string Date;

private string IconUrl;

protected override void OnInitialized()

https://getbootstrap.com/docs/5.0/components/card
https://getbootstrap.com/docs/5.0/components/card

130 Building a Weather App as a Progressive Web App (PWA)

{

 Date = DateTimeOffset

 .FromUnixTimeSeconds(Seconds)

 .LocalDateTime

 .ToLongDateString();

 IconUrl = String.Format(

 "https://openweathermap.org/img/wn/{0}@2x.png",

 Icon);

}

The preceding code defines the parameters that are used to display the daily weather
forecast. The OnInitialized method is used to format the Date and IconUrl
fields.

We have added a Razor component to display each day's weather forecast using the Code
component from Bootstrap.

Using the OpenWeather One Call API
We need to fetch the weather forecast using the OpenWeather One Call API. We will do
this by following these steps:

1.	 Open the Pages\Index.razor file.

2.	 Add the following using statement:

@using System.Text

3.	 Add the following @inject directive:

@inject HttpClient Http

4.	 Add the following property to the @code block:

OpenWeather forecast;

5.	 Add the GetForecast method to the @code block, as follows:

private async Task GetForecast()

{

 string APIKey = "{Your_API_Key}";

 StringBuilder url = new StringBuilder();

Creating a PWA 131

 url.Append("https://api.openweathermap.org");

 url.Append("/data/2.5/onecall?");

 url.Append("lat=");

 url.Append(pos.Latitude);

 url.Append("&lon=");

 url.Append(pos.Longitude);

 url.Append("&exclude=");

 url.Append("current,minutely,hourly,alerts");

 url.Append("&units=imperial");

 url.Append("&appid=");

 url.Append(APIKey);

 forecast = await Http

 .GetFromJsonAsync<OpenWeather>

 (url.ToString());

}

The preceding method uses the OpenWeather One Call API with the coordinates
obtained by the GetPosition method.

6.	 Update the OnInitializedAsync method to call the GetForecast method
and update the error message, like this:

try

{

 await GetPosition();

 await GetForecast();

}

catch (Exception)

{

 message = "Error encountered";

};

The preceding code uses the GetForecast method to populate the forecast
object.

Important note
You need to set the value of the APIKey string to the API key that you
obtained from OpenWeather.

132 Building a Weather App as a Progressive Web App (PWA)

We have populated the forecast object. Next, we need to display it.

Displaying the forecast
We need to add a collection of daily forecasts to the Home page. We will do this by
following these steps:

1.	 Return to the Pages\Index.razor file.

2.	 Replace the @if statement with the following markup:

@if (forecast == null)

{

 <p>@message</p>

}

else

{

 <div class="card-group">

 @foreach (var item in forecast.Daily.Take(5))

 {

 <DailyForecast

 Seconds="@item.Dt"

 LowTemp="@item.Temp.Min"

 HighTemp="@item.Temp.Max"

 Description="@item.Weather[0].Description"

 Icon="@item.Weather[0].Icon" />

 }

 </div>

}

The preceding markup loops through the forecast object five times. It uses the
DailyForecast component to display the daily forecast.

3.	 From the Build menu, select the Build Solution option.

4.	 Return to the browser.

5.	 Use Ctrl + R to refresh the browser.

6.	 Close the browser.

We have completed our WeatherForecast application. Now, we need to convert it into
a PWA. In order to do that, we need to add a logo, a manifest file, and a service worker.

Creating a PWA 133

Adding the logo
We need to add an image to be used as a logo for the app. We will do this by following
these steps:

1.	 Right-click the wwwroot folder and select the Add, New Folder option from
the menu.

2.	 Name the new folder images.

3.	 Copy the Sun-512.png image from the GitHub repository to the images folder.

At least one image must be included in the manifest file for the PWA to be installed. Now,
we can add a manifest file.

Adding a manifest file
To convert the web app into a PWA, we need to add a manifest file. We will do this by
following these steps:

1.	 Right-click the wwwroot folder and select the Add, New Item option from
the menu.

2.	 Enter json in the Search box.

3.	 Select JSON File.

4.	 Name the file manifest.json.

5.	 Click the Add button.

6.	 Enter the following JSON code:

{

 "lang": "en",

 "name": "5-Day Weather Forecast",

 "short_name": "Weather",

 "display": "standalone",

 "start_url": "./",

 "background_color": "#ffa500",

 "theme_color": "transparent",

 "description": "This is a simple 5-day weather

 forecast application.",

 "orientation": "any",

 "icons": [

134 Building a Weather App as a Progressive Web App (PWA)

 {

 "src": "images/Sun-512.png",

 "type": "image/png",

 "sizes": "512x512"

 }

]

}

7.	 Open the wwwroot\index.html file.

8.	 Add the following markup to the bottom of the head element:

<link href="manifest.json" rel="manifest" />

9.	 Add the following markup below the preceding markup:

<link rel="apple-touch-icon"

 sizes="512x512"

 href="Sun-512.png" />

Tip
For iOS Safari users, you must include the preceding link tag to instruct it to
use the indicated icon or it will generate an icon by taking a screenshot of the
page's content.

We have added a manifest file to our web app to control how it looks and behaves when
it is installed. Next, we need to add a service worker.

Adding a simple service worker
To finish converting the web app into a PWA, we need to add a service worker. We will do
this by following these steps:

1.	 Right-click the wwwroot folder and select the Add, New Item option from
the menu.

2.	 Enter html in the Search box.

3.	 Select HTML Page.

4.	 Name the file offline.html.

5.	 Click the Add button.

Creating a PWA 135

6.	 Add the following markup to the body element:

<h1>You are offline.</h1>

7.	 Right-click the wwwroot folder and select the Add, New Item option from the
menu.

8.	 Enter java in the Search box.

9.	 Select JavaScript File.

10.	 Name the file service-worker.js.

11.	 Click the Add button.

12.	 Add the following constants:

const OFFLINE_VERSION = 1;

const CACHE_PREFIX = 'offline';

const CACHE_NAME = `${CACHE_PREFIX}${OFFLINE_VERSION}`;

const OFFLINE_URL = 'offline.html';

The preceding code sets the name of the current cache and the name of the file
we will be using to indicate that we are offline.

13.	 Add the following event listeners:

self.addEventListener('install',

 event => event.waitUntil(onInstall(event)));

self.addEventListener('activate',

 event => event.waitUntil(onActivate(event)));

self.addEventListener('fetch',

 event => event.respondWith(onFetch(event)));

The preceding code designates the functions to be used for each of the following
steps: install, activate, and fetch.

14.	 Add the following onInstall function:

async function onInstall(event) {

 console.info('Service worker: Install');

 const cache = await caches.open(CACHE_NAME);

 await cache.add(new Request(OFFLINE_URL));

}

136 Building a Weather App as a Progressive Web App (PWA)

The preceding function opens the indicated cache. If the cache does not yet exist,
it creates the cache and then opens it. After the cache is open, it adds the indicated
request/response pair to the cache.

15.	 Add the following onActivate function:

async function onActivate(event) {

 console.info('Service worker: Activate');

 const cacheKeys = await caches.keys();

 await Promise.all(cacheKeys

 .filter(key => key.startsWith(CACHE_PREFIX)

 && key !== CACHE_NAME)

 .map(key => caches.delete(key)));

}

The preceding code fetches the names of all of the caches. All of the caches that do
not match the name of the indicated cache are deleted.

Tip
It is your responsibility to purge obsolete caches. Each browser has a limit as
to the amount of storage that a web app can use. If you violate that limit, all of
your caches may be deleted by the browser.

16.	 Add the following onFetch function:

async function onFetch(event) {

 if (event.request.method === 'GET') {

 try {

 return await fetch(event.request);

 } catch (error) {

 const cache = await

 caches.open(CACHE_NAME);

 return await cache.match(OFFLINE_URL);

 };

 };

}

Creating a PWA 137

In the preceding code, if the fetch fails, the cache is opened and the previously
cached offline page is served.

17.	 Open the wwwroot\index.html file.

18.	 Add the following markup to the bottom of the body element:

<script>

 navigator.serviceWorker.register('service-worker.js');

</script>

We have added an offline page service worker that will display the offline.html page
when the PWA is offline.

Testing the service worker
We need to test that the service worker is allowing us to work offline. We will do this by
following these steps:

1.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

2.	 Click F12 to open the Developer Tools interface.

3.	 Select the Application tab.

138 Building a Weather App as a Progressive Web App (PWA)

4.	 Select the Manifest option from the menu on the left to view the App Manifest.

Figure 5.10 – App Manifest details

Creating a PWA 139

5.	 Select the Service Workers option from the menu on the left to view the service
worker that is installed for the current client, as illustrated in the following
screenshot:

Figure 5.11 – Service Workers dialog

Tip
Click on the See all registrations link to see all of the service workers that are
installed on your device.

6.	 Select the Cache Storage option from the menu on the left to view the caches.

140 Building a Weather App as a Progressive Web App (PWA)

7.	 Click on the offline1 cache to view its contents, as illustrated in the following
screenshot:

Figure 5.12 – Cache Storage option

8.	 Select the Service Workers option from the menu on the left.

9.	 Check the Offline checkbox on the Service Workers dialog.

10.	 Refresh the browser, and you should see the following screen:

Figure 5.13 – Offline page
The page that is displayed is from the browser's cache.

11.	 Uncheck the Offline checkbox on the Service Workers dialog.

12.	 Refresh the browser.

We have tested that the service worker enables our web app to work offline. Now, we can
install the PWA.

Creating a PWA 141

Installing the PWA
We need to test the PWA by installing it. We will do this by following these steps:

1.	 Select the Install 5-Day Weather Forecast menu option from the browser's menu:

Figure 5.14 – Install 5-Day Weather Forecast option

Tip
On Chromium-based browsers, the Install button is on the URL bar. However,
for other types of browsers, you will need to install the PWA from either the
Menu button or the Share button.

2.	 Click the Install button on the dialog:

Figure 5.15 – Install PWA dialog
Once installed, the PWA appears without an address bar. It appears on our taskbar
and we can run it from our Start menu. The following screenshot shows the PWA
after it has been installed:

Figure 5.16 – Installed PWA

142 Building a Weather App as a Progressive Web App (PWA)

3.	 Close the browser.

4.	 Click the Windows key and open the 5-Day Weather Forecast app:

Figure 5.17 – The PWA on the Start menu
The application opens, and its icon appears on the taskbar. We can pin it to the
taskbar if we want.

We have successfully installed and run the PWA. It is just as easy to uninstall a PWA as
it is to install one.

Uninstalling the PWA
We need to uninstall the PWA. We will do this by following these steps:

1.	 Select the Customize and control 5-Day Weather Forecast option from the
PWA's menu:

Figure 5.18 – Customize and control 5-Day Weather Forecast option

2.	 Select the Uninstall 5-Day Weather Forecast… option:

Figure 5.19 – Customize and control PWA dialog

Summary 143

3.	 Click the Remove button:

Figure 5.20 – Remove PWA dialog

We have uninstalled the PWA.

Summary
You should now be able to convert a Blazor WebAssembly app into a PWA by adding
a manifest file and a service worker.

In this chapter, we introduced PWAs. We explained how to convert a web app into
a PWA by adding a manifest file and a service worker. We explained how to work with
manifest files and service workers. We went into some detail explaining the different types
of service workers and explained how to use the CacheStorage API to cache request/
response pairs. Finally, we demonstrated how to use both the Geolocation API and the
OpenWeather One Call API.

After that, we used the Empty Blazor App project template to create a new project.
We added a JavaScript function that uses the Geolocation API to obtain our coordinates.
We added some models to capture the coordinates and used JS interop to invoke the
JavaScript function. We used the OpenWeather One Call API to obtain the local 5-day
weather forecast and we created a couple of Razor components to display it.

In the last part of the chapter, we converted the Blazor WebAssembly app into a PWA by
adding an image, a manifest file, and an offline page service worker. Finally, we installed,
ran, and uninstalled the PWA. We can apply our new skills to convert our existing
web apps into PWAs that combine the benefits of a web app with the look and feel of
a native app.

In the next chapter, we will use dependency injection (DI) to build a shopping-cart
application.

144 Building a Weather App as a Progressive Web App (PWA)

Questions
The following questions are provided for your consideration:

1.	 Are service workers asynchronous or synchronous?

2.	 Can localStorage be used inside a service worker for data storage?

3.	 Can service workers manipulate the DOM?

4.	 Are PWAs secure?

5.	 Are PWAs platform-specific?

6.	 What are the differences between a PWA and a native app?

Further reading
The following resources provide more information concerning the topics in this chapter:

•	 For more information on the Geolocation API specification, refer to https://
w3c.github.io/geolocation-api.

•	 For more information on using the Geolocation API, refer to https://
developer.mozilla.org/en-US/docs/Web/API/Geolocation_API.

•	 For more information on the OpenWeather API, refer to https://
openweathermap.org/api.

•	 For more information on the Web Application Manifest specification, refer to
https://www.w3.org/TR/appmanifest/.

•	 For more information on the Service Worker specification, refer to https://
w3c.github.io/ServiceWorker.

•	 For more information on using the CacheStorage API, refer to https://
developer.mozilla.org/en-US/docs/Web/API/CacheStorage.

•	 For more examples of service workers, refer to the Workbox website at https://
developers.google.com/web/tools/workbox.

•	 For more information on Microsoft's PWABuilder, refer to https://www.
pwabuilder.com.

https://w3c.github.io/geolocation-api
https://w3c.github.io/geolocation-api
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation_API
https://openweathermap.org/api
https://openweathermap.org/api
https://www.w3.org/TR/appmanifest/
https://w3c.github.io/ServiceWorker
https://w3c.github.io/ServiceWorker
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://developer.mozilla.org/en-US/docs/Web/API/CacheStorage
https://developers.google.com/web/tools/workbox
https://developers.google.com/web/tools/workbox
https://www.pwabuilder.com
https://www.pwabuilder.com

6
Building a Shopping

Cart Using
Application State

Sometimes, we need our applications to maintain state between different pages. We can
accomplish this by using dependency injection (DI). DI is used to access services that are
configured in a central location.

In this chapter, we will create a shopping cart. As you add and delete items from the
shopping cart, the application will maintain a list of the items in the shopping cart. The
contents of the shopping cart will be retained when a user navigates to another page and
then returns to the page with the shopping cart. Also, the shopping cart's total will be
displayed on all of the pages.

In this chapter, we will cover the following topics:

•	 Application state

•	 Dependency injection

•	 Creating the shopping cart project

146 Building a Shopping Cart Using Application State

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free Community Edition of Visual Studio 2019, refer to
Chapter 1, Introduction to Blazor WebAssembly.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter06.

The code in action video is available here: https://bit.ly/3fxwYob.

Application state
In a Blazor WebAssembly app, the browser's memory is used to hold the application's
state. This means that when the user navigates between pages, the state is lost, unless we
preserve it. We will be using the AppState pattern to preserve the application's state.

In the AppState pattern, a service is added to a DI container to coordinate the state
between related components. The service contains all of the states that need to be
maintained. Because the service is managed by the DI container, it can outlive individual
components and retain the state of the application as the UI is changing.

The service can be a simple class or a complex class. One service can be used to manage
the state of multiple components across the entire application. A benefit of the AppState
pattern is that it leads to a greater separation between presentation and business logic.

Important note
The application state that is held in the browser's memory is lost when the user
reloads the page.

For the project in this chapter, we will use a DI service instance to preserve the
application's state.

Understanding DI
DI is a technique in which an object accesses services that have been configured in
a central location. The central location is the DI container. When using DI, each
consuming class does not need to create its own instance of the injected class that it has
a dependency on. It is provided by the framework and is called a service. In a Blazor
WebAssembly application, the services are defined in the Program.Main method of the
program.cs file.

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter06
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter06
https://bit.ly/3fxwYob

Understanding DI 147

We have already used DI in this book with the following services:

•	 HttpClient

•	 IJSRuntime

•	 NavigationManager

DI container
When a Blazor WebAssembly application starts, it configures a DI container. The DI
container is responsible for building the instances of the service and lives until the user
closes the tab in their browser that is running the web app. In the following example, the
CartService implementation is registered for IcartService:

 builder.Services.AddSingleton<ICartService, CartService>();

After a service has been added to a DI container, we use the @inject directive to
inject the service into any classes that depend on it. The @inject directive takes two
parameters: type and property:

•	 Type: This is the type of service.

•	 Property: This is the name of the property that is receiving the service.

The following example shows how to use the @inject directive:

@inject ICounterService counterService

Dependencies are injected after the component instance has been created, but before the
OnInitialized or OnInitializedAsync life cycle events are executed. This means
that you cannot use the injected class in the component's constructor, but you can use it in
either the OnInitialized or OnInitializedAsync method.

Service lifetime
The lifetime of a service that is injected using DI can be any of the following values:

•	 Singleton

•	 Scoped

•	 Transient

148 Building a Shopping Cart Using Application State

Singleton
If the service lifetime is defined as Singleton, this means that a single instance of the
class will be created and that instance will be shared throughout the application. Any
components that use the service will receive an instance of the same service.

In a Blazor WebAssembly application, this is true for the lifetime of the current
application that is running in the current tab of the browser. This is the service lifetime
that we will use to manage the application's state in this chapter's project.

Scoped
If the service lifetime of the service is defined as Scoped, this means that a new instance
of the class will be created for each scope. Since a Blazor WebAssembly application does
not have a concept of DI scopes, these services are treated like Singleton services.

In our project template, we are using a Scoped service to create the HttpClient
instance that we are using for data access. This is because Microsoft's project templates use
the scoped service lifetime for their services for symmetry with server-side Blazor.

Transient
If the service lifetime of the service is defined as Transient, this means that a new
instance of the class will be created every time an instance of the service is requested.
When using transient services, the DI container simply acts as a factory that creates
unique instances of the class. Once the instance is created and injected into the dependent
component, the container has no further interest in it.

We can use DI to inject the same instance of a service into multiple components. It is used
by the AppState pattern to allow the application to maintain state between components.

Now, let's get a quick overview of the project that we are going to build in this chapter.

Project overview
In this chapter, we will build a Blazor WebAssembly app that includes a shopping cart.
We will be able to add and remove different products from the shopping cart. The cart's
total will be displayed on each of the pages in the app.

Creating the shopping cart project 149

The following is a screenshot of the completed application:

Figure 6.1 – ShoppingCart app

The build time for this project is approximately 60 minutes.

Creating the shopping cart project
The ShoppingCart project will be created by using the Empty Blazor WebAssembly
App project template. First, we will add logic to add and remove products from the
shopping cart. Then, we will demonstrate that the cart's state is lost when we navigate
between pages. To maintain the cart's state, we will register a service in the DI container
that uses the AppState pattern. Finally, we will demonstrate that by injecting the new
service into the relevant components, the cart's state is not lost.

150 Building a Shopping Cart Using Application State

Getting started with the project
We need to create a new Blazor WebAssembly app. We do this as follows:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt + S) textbox, enter blazor and then hit the
Enter key.

The following screenshot shows the Empty Blazor WebAssembly App project
template that we created in Chapter 2, Building Your First Blazor WebAssembly
Application:

Figure 6.2 – Empty Blazor WebAssembly App project template

4.	 Select the Empty Blazor WebAssembly App project template and then click the
Next button.

5.	 Enter ShoppingCart in the Project name textbox and then click the Create
button:

Figure 6.3 – Configure your new project dialog

Creating the shopping cart project 151

Tip
In the preceding example, we placed the ShoppingCart project into the
E:/Blazor folder. However, the project's location is not important.

6.	 Open the Pages\Index.razor page.

7.	 Add the following markup:

<div class="jumbotron">

 <h1 class="display-4">Welcome to Blazing Tasks!</h1>

 <p class="lead">

 Your one stop shop for all your tasks.

 </p>

</div>

We have now created the ShoppingCart Blazor WebAssembly project.

Adding the Product class
We need to add the products that are for sale. We do this as follows:

1.	 Right-click the ShoppingCart project and select the Add, New Folder option
from the menu.

2.	 Name the new folder Models.

3.	 Right-click the Models folder and select the Add, Class option from the menu.

4.	 Name the new class Product.

5.	 Click the Add button.

6.	 Add the following properties to the Product class:

public int ProductId { get; set; }

public string ProductName { get; set; }

public int Price { get; set; }

public string Image { get; set; }

7.	 Right-click the wwwroot folder and select the Add, New Folder option from
the menu.

8.	 Name the new folder sample-data.

152 Building a Shopping Cart Using Application State

9.	 Right-click the sample-data folder and select the Add, New Item option from
the menu.

10.	 Enter json in the Search box.

11.	 Select JSON File.

12.	 Name the file products.json.

13.	 Click the Add button.

14.	 Update the file to the following:

products.json
[

 {

 "productId": 1,

 "productName": "Charger",

 "price": 15,

 "image": "charger.jpg"

 },

 {

 "productId": 2,

 "productName": "Ear Buds",

 "price": 22,

 "image": "earbuds.jpg"

 },

 {

 "productId": 3,

 "productName": "Key Chain",

 "price": 1,

 "image": "keychain.jpg"

 },

 {

 "productId": 4,

 "productName": "Travel Mug",

 "price": 8,

 "image": "travelmug.jpg"

 },

 {

Creating the shopping cart project 153

 "productId": 5,

 "productName": "T-Shirt",

 "price": 20,

 "image": "tshirt.jpg"

 }

]

Important note
You can copy the products.json file from the GitHub repository.

15.	 Right-click the wwwroot folder and select the Add, New Folder option from
the menu.

16.	 Name the new folder images.

17.	 Copy the following images from the GitHub repository to the images folder:
Charger.jpg, Earbuds.jpg, KeyChain.jpg, TravelMug.jpg, and
Tshirt.jpg.

We have added a collection of products to our web app. Next, we need to add a store.

Adding the Store page
To add a store, we need to add a Store component to our web app. We do this as follows:

1.	 Open the Shared\NavMenu.razor page.

2.	 Add the following markup before the closing ul tag:

<li class="nav-item px-3">

 <NavLink class="nav-link" href="store">

 Store

 </NavLink>

The preceding markup adds a menu option for the Store page.

3.	 Right-click the Pages folder and select the Add, Razor Component option from
the menu.

154 Building a Shopping Cart Using Application State

4.	 Name the new component Store.

5.	 Click the Add button.

6.	 Replace the markup with the following:

@page "/store"

@using ShoppingCart.Models

@inject HttpClient Http

@if (products == null)

{

 <p>Loading...</p>

}

else

{

 <div class="row">

 </div>

}

@code {

 public IList<Product> products;

 public IList<Product> cart = new List<Product>();

 private int total;

}

The preceding code adds some directives and some properties.

7.	 Add the following markup in the div element:

<div class="col-xl-4 col-lg-6">

 <h2>Products</h2>

 <table class="table">

 @foreach (Product item in products)

 {

 <tr>

 <td>

 </td>

Creating the shopping cart project 155

 <td class="align-middle">

 @item.ProductName

 </td>

 <td class="align-middle">

 $@item.Price

 </td>

 <td class="align-middle">

 <button class="btn btn-primary"

 @onclick="@(() =>

 AddProduct(item))">

 Add to Cart

 </button>

 </td>

 </tr>

 }

 </table>

</div>

The preceding markup adds a table that displays all of the products that are for sale.

8.	 Add the following markup below the preceding div element:

<div class="col-xl-4 col-lg-6">

 @if (cart.Any())

 {

 <h2>Your Cart</h2>

 <ul class="list-group">

 @foreach (Product item in cart)

 {

 <li class="list-group-item p-2">

 <button class="btn btn-sm"

 @onclick="@(()

 =>DeleteProduct(item))">

 </button>

 @item.ProductName - $@item.Price

156 Building a Shopping Cart Using Application State

 }

 <div class="p-2">

 <h3>Total: $@total</h3>

 </div>

 }

</div>

The preceding markup displays all of the items in our list.

9.	 Add the following code to the @code block:

protected override async Task OnInitializedAsync()

{

 products = await Http.GetFromJsonAsync<Product[]>

 ("sample-data/products.json");

}

The preceding code reads the products from the products.json file using
HttpClient.

10.	 Add the AddProduct method to the @code block:

private void AddProduct(Product product)

{

 cart.Add(product);

 total += product.Price;

}

The preceding code adds the indicated product to the cart and increments the total
by the product's price.

11.	 Add the DeleteProduct method to the @code block:

private void DeleteProduct(Product product)

{

 cart.Remove(product);

 total -= product.Price;

}

The preceding code removes the indicated product from the cart and decrements
the total by the product's price.

Creating the shopping cart project 157

We have added a Store page to the web app. Now we need to test it.

Demonstrating that application state is lost
We need to test the Store page. We do this as follows:

1.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

2.	 Select the Store option on the navigation menu.

3.	 Add a few items to the cart.

4.	 Select the Home option on the navigation menu.

5.	 Return to the Store page by selecting the Store option on the navigation menu.

6.	 Confirm that the cart is now empty.

When we navigate between the pages in our web app, the state is lost. We can maintain the
state by using the AppState pattern.

Creating the ICartService interface
We need to create an ICartService interface. We do this as follows:

1.	 Return to Visual Studio.

2.	 Right-click the ShoppingCart project and select the Add, New Folder option
from the menu.

3.	 Name the new folder Services.

4.	 Right-click the Services folder and select the Add, New Item option from
the menu.

5.	 Enter interface in the Search box.

6.	 Select Interface.

7.	 Name the file ICartService.

8.	 Click the Add button.

9.	 Enter the following code:

IList<Product> Cart{ get; }

int Total { get; set; }

158 Building a Shopping Cart Using Application State

event Action OnChange;

void AddProduct(Product product);

void DeleteProduct(Product product);

10.	 Add the following using statement:

using ShoppingCart.Models;

We have created the ICartService interface. Now we need to create a class that
inherits from it.

Creating the CartService class
We need to create the CartService class. We do this as follows:

1.	 Right-click the Services folder and select the Add, Class option from the menu.

2.	 Name the class CartService.

3.	 Click the Add button.

4.	 Update the class to the following:

public class CartService : ICartService

{

 public IList<Product> Cart { get; private set; }

 public int Total { get; set; }

 public event Action OnChange;

}

The CartService class inherits from the ICartService interface.

5.	 Add the following using statement:

using ShoppingCart.Models;

6.	 Add the following constructor:

public CartService() { Cart = new List<Product>(); }

7.	 Add the NotifyStateChanged method to the class:

private void NotifyStateChanged() => OnChange?.Invoke();

Creating the shopping cart project 159

In the preceding code, the OnChange event is invoked when the
NotifyStateChanged method is called.

8.	 Add the AddProduct method to the class:

public void AddProduct(Product product)

{

 Cart.Add(product);

 Total += product.Price;

 NotifyStateChanged();

}

The preceding code adds the indicated product to the list of products and
increments the total. It also calls the NotifyStateChanged method.

9.	 Add the DeleteProduct method to the class:

public void DeleteProduct(Product product)

{

 Cart.Remove(product);

 Total -= product.Price;

 NotifyStateChanged();

}

The preceding code removes the indicated product from the list of products and
decrements the total. It also calls the NotifyStateChanged method.

We have completed the CartService class. Now we need to register CartService in
the DI container.

Registering CartService in the DI container
We need to register CartService in the DI container before we can inject it into our
Store page. We do this as follows:

1.	 Open the Program.cs file.

2.	 Add the following code after the code that registers HttpClient:

builder.Services.AddScoped<ICartService, CartService>();

3.	 Add the following using statement:

using ShoppingCart.Services;

160 Building a Shopping Cart Using Application State

We have registered CartService. Now we need to update the Store page to use it.

Injecting CartService
We need to update the Store page. We do this as follows:

1.	 Open the Pages\Store.razor page.

2.	 Add the following @using directive:

@using ShoppingCart.Services

3.	 Add the following @inject directive:

@inject ICartService cartService

4.	 Update the Add to Cart button to the following:

<button class="btn btn-primary"

 @onclick="@(() =>

 cartService.AddProduct(item))">

 Add to Cart

</button>

The preceding markup uses cartService to add products to the cart.

5.	 Update the cart div element to the following:

@if (cartService.Cart.Any())

{

 <h2>Your Cart</h2>

 <ul class="list-group">

 @foreach (Product item in cartService.Cart)

 {

 <li class="list-group-item p-2">

 <button class="btn btn-sm"

 @onclick="@(() =>cartService.
DeleteProduct(item))">

 </button>

 @item.ProductName - $@item.Price

 }

Creating the shopping cart project 161

 <div class="p-2">

 <h3>Total: $@cartService.Total</h3>

 </div>

}

The preceding markup uses CartService to iterate through the products in the
cart and to delete products from the cart.

6.	 Delete the cart property, the AddProduct method, and the DeleteProduct
method from the @code block.

7.	 From the Build menu, select the Build Solution option.

8.	 Return to the browser.

9.	 Use Ctrl + R to refresh the browser.

10.	 Add a few items to the cart.

11.	 Select the Home option on the navigation menu.

12.	 Return to the Store page by selecting the Store option on the navigation menu.

13.	 Confirm that the cart is not empty.

We have confirmed that CartService is working. Now we need to add the cart total to
all of the pages.

Adding the cart total to all of the pages
To view the cart total on all of the pages, we need to add the cart total to a component that
is used on all of the pages. Since the MainLayout component is used by all of the pages,
we will add the cart total to it. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Shared\MainLayout.razor page.

3.	 Add the following @using directive:

@using ShoppingCart.Services

4.	 Add the following @inject directive:

@inject ICartService cartService

162 Building a Shopping Cart Using Application State

5.	 Add the following markup to top-row div:

<h3>Cart Total: $@cartService.Total</h3>

6.	 From the Build menu, select the Build Solution option.

7.	 Return to the browser.

8.	 Use Ctrl + R to refresh the browser.

9.	 Add a few items to the cart.

10.	 Confirm that the Cart Total field at the top of the page does not update.

The cart total at the top of the page is not being updated as we add new items to the cart.
We need to deal with this.

Using the OnChange method
We need to notify the component when it needs to be updated. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the Shared\MainLayout.razor page.

3.	 Add the following @implements directive:

@implements IDisposable

4.	 Add the following @code block:

@code{

 protected override void OnInitialized()

 {

 cartService.OnChange += StateHasChanged;

 }

 public void Dispose()

 {

 cartService.OnChange -= StateHasChanged;

 }

}

Summary 163

In the preceding code, the component's StateHasChanged method is subscribed
to the cartService.OnChange method in the OnInitialized method, and
unsubscribed in the Dispose method.

5.	 From the Build menu, select the Build Solution option.

6.	 Return to the browser.

7.	 Use Ctrl + R to refresh the browser.

8.	 Add some items to the cart.

9.	 Confirm that the Cart Total field at the top of the page updates.

We have updated the component to call the StateHasChanged method whenever the
OnChange method of CartService is invoked.

Tip
Do not forget to unsubscribe from the event when you dispose of the
component.

You must unsubscribe from the event to prevent the StateHasChanged method from
being invoked each time the cartService.OnChange event is raised. Otherwise, your
application will experience resource leaks.

Summary
You should now be able to use DI to apply the AppState pattern to a Blazor
WebAssembly app.

In this chapter, we introduced application state and DI. After that, we used the Empty
Blazor WebAssembly App project template to create a new project. We added a shopping
cart to the project and demonstrated that application state is lost when we navigate
between pages. To maintain the application's state, we registered the CartService
service in the DI container. Finally, we demonstrated that by using the AppState pattern,
we can maintain the shopping cart's state.

We can apply our new skills with DI to maintain the application state for any Blazor
WebAssembly app.

In the next chapter, we will build a Kanban board using events.

164 Building a Shopping Cart Using Application State

Questions
The following questions are provided for your consideration:

1.	 Can localStorage be used to maintain the cart's state when the page is reloaded?

2.	 Why don't we need to call the StateHasChanged method in the Store
component?

Further reading
The following resources provide more information concerning the topics covered in
this chapter:

•	 For more information on DI, refer to https://docs.microsoft.
com/en-us/aspnet/core/fundamentals/dependency-
injection?view=aspnetcore-5.0.

•	 For more information on events, refer to https://docs.microsoft.com/
en-us/dotnet/csharp/programming-guide/events.

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/events

7
Building a Kanban

Board Using Events
As developers, we strive to make our applications as dynamic as possible. For that,
we use events. Events are messages sent by an object to indicate that an action has
occurred. Razor components can handle many different types of events.

In this chapter, we will learn how to handle different types of events in a Blazor
WebAssembly app. We will also learn how to use both arbitrary parameters and attribute
splatting to simplify how we assign attributes to components.

The project that we create in this chapter will be a Kanban board that uses the drag-
and-drop events. Kanban boards visually depict work at various stages of a process. Our
Kanban board will include three dropzones. Finally, we will use arbitrary parameters and
attribute splatting to create an object to add new tasks to our Kanban board.

In this chapter, we will cover the following topics:

•	 Event handling

•	 Arbitrary parameters

•	 Attribute splatting

•	 Creating the Kanban board project

166 Building a Kanban Board Using Events

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free Community edition of Visual Studio 2019, refer
to Chapter 1, Introduction to Blazor WebAssembly. You will also need the Empty Blazor
WebAssembly App project template that we created in Chapter 2, Building Your First
Blazor WebAssembly Application.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter07.

The code in action video is available here: https://bit.ly/3bHfPHt

Event handling
Razor components handle events by using an HTML element attribute named
@on{EVENT} where EVENT is the name of the event.

The following code calls the OnClickHandler method when the button is clicked:

<button class="btn btn-success" @onclick="OnClickHandler">

 Click Me

</button>

@code {

 private void OnClickHandler()

 {

 // ...

 }

}

Since event handlers automatically trigger a UI render, we do not need to call
StateHasChanged when processing them. Event handlers can be used to call both
synchronous and asynchronous methods. Also, they can reference any arguments that are
associated with the event.

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter07
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter07
https://bit.ly/3bHfPHt

Event handling 167

The following code asynchronously calls the OnChangeHandler method when the
checkbox is changed:

<input type="checkbox" @onchange="OnChangedHandler" />

@code {

 private async Task OnChangedHandler(ChangeEventArgs e)

 {

 newvalue = e.Value.ToString();

 // await ...

 }

}

In the preceding code, the ChangeEventArgs class is used to supply information about
the change event. The event arguments are optional and should only be included if they
are used by the method.

All of the EventArgs classes that are supported by the ASP.NET Core framework
are supported by the Blazor WebAssembly framework. This is a list of the supported
EventArgs classes:

•	 ClipboardEventArgs

•	 DragEventArgs

•	 ErrorEventArgs

•	 EventArgs

•	 FocusEventArgs

•	 ChangeEventArgs

•	 KeyboardEventArgs

•	 MouseEventArgs

•	 PointerEventArgs

•	 WheelEventArgs

•	 ProgressEventArgs

•	 TouchEventArgs

168 Building a Kanban Board Using Events

Lambda expressions
When we need to include arguments with a method, we can use a lambda expression.
Lambda expressions are used to create anonymous functions. They use the => operator to
separate the parameters from the body of the expression.

This is an example of an @onclick event that uses a lambda expression:

<button class="btn btn-info"

 @onclick="@(e => Console.WriteLine("Blazor

 Rocks!"))">

 Who Rocks?

</button>

In the preceding code, the @onclick event provides a string to the Console.
WriteLine method.

Tip
If you use a loop variable directly in a lambda expression, the same variable
will be used by all of the lambda expressions. Therefore, you should capture the
loop variable's value in a local variable before using it in a lambda expression.

Preventing default actions
Occasionally, we need to prevent the default action associated with an event. We can do
that by using the @on{EVENT}:preventDefault directive, where EVENT is the name
of the event.

For example, when dragging an element, the default behavior is that the user is not
allowed to drop it into another element. In the Kanban board project, we will need to drop
items into various dropzones. Therefore, we will need to prevent that default behavior.

The following code prevents the ondragover default behavior from occurring in order
to allow us to drop elements into the div element:

<div class="dropzone"

 dropzone="true"

 ondragover="event.preventDefault();"

</div>

Attribute splatting 169

The Blazor WebAssembly framework makes it easy for us to access events by using the
@on{EVENT} attribute. When working with components, we usually need to supply
multiple attributes. Using attribute splatting, we can avoid assigning the attributes directly
in the HTML markup.

Attribute splatting
When a child component has many parameters, it can be tedious to assign each of the
values in HTML. To avoid having to do that, we can use attribute splatting.

With attribute splatting, the attributes are captured in a dictionary and then passed to
the component as a unit. One attribute is added per dictionary entry. The dictionary
must implement IEnumerable<KeyValuePair<string, object>> or
IReadOnlyDictionary<string, object> with string keys. We reference the
dictionary using the @attributes directive.

This is the code for a component called BweButton that has quite a few parameters:

BweButton.razor

<button class="@Class" disabled="@Disabled" title="@Title" @
onclick="@ClickEvent">

 @ChildContent

</button>

@code {

 [Parameter] public string Class { get; set; }

 [Parameter] public bool Disabled { get; set; }

 [Parameter] public string Title { get; set; }

 [Parameter]

 public EventCallback ClickEvent { get; set; }

 [Parameter]

 public RenderFragment ChildContent { get; set; }

}

170 Building a Kanban Board Using Events

This is sample markup to render a BweButton component without using attribute
splatting:

<BweButton Class="btn btn-danger"

 Disabled="false"

 Title="This is a button"

 ClickEvent="OnClickHandler">

 Submit

</BweButton>

This is the button that is rendered by the preceding markup:

Figure 7.1 – Rendered BweButton

Tip
Some HTML attributes, such as disabled and translate, do not
require any values. For these types of attributes, if the value is set to false,
the attribute will not be included in the HTML output generated by the Blazor
WebAssembly framework

By using attribute splatting, we can simplify the preceding markup to the following:

<BweButton @attributes="InputAttributes"

 ClickEvent="OnClickHandler">

 Submit

</BweButton >

This is the definition of InputAttributes used by the preceding markup:

public Dictionary<string, object> InputAttributes { get; set; }

 = new Dictionary<string, object>()

 {

 { "Class", "btn btn-danger" },

 { "Disabled", false},

 { "Title", "This is a button" }

 };

Arbitrary parameters 171

The preceding code defines InputAttributes that are passed to BweButton.

The real power of attribute splatting is realized when it is combined with arbitrary
parameters.

Arbitrary parameters
In the proceeding example, we used explicitly defined parameters to assign the button's
attributes. A much more efficient way of assigning values to attributes is to use arbitrary
parameters. An arbitrary parameter is a parameter that is not explicitly defined by the
component. The Parameter attribute has a CaptureUnmatchedValues property
that is used to capture any arbitrary parameters.

This is a new version of BweButton that uses arbitrary parameters:

<button @attributes="InputAttributes" >

 @ChildContent

</button>

@code {

 [Parameter(CaptureUnmatchedValues = true)]

 public Dictionary<string, object> InputAttributes {

 get; set; }

 [Parameter]

 public RenderFragment ChildContent { get; set; }

}

The preceding code includes a parameter named InputAttributes that has its
CaptureUnmatchedValues property set to true.

Tip
A component can only have one parameter with
CaptureUnmatchedValues set to true.

172 Building a Kanban Board Using Events

This is the updated markup used to render the new version of BweButton:

<BweButton @attributes="InputAttributes"

 @onclick="ButtonClicked"

 class="btn btn-info">

 Submit

</BweButton>

This is the definition of InputAttributes used by the preceding markup:

public Dictionary<string, object> InputAttributes { get; set; }
=

 new Dictionary<string, object>()

 {

 { "class", "btn btn-danger" },

 { "title", "This is another button" },

 { "name", "btnSubmit" },

 { "type", "button" },

 { "myAttribute", "123"}

 };

Although none of the attributes in the dictionary have been explicitly defined in the new
version of BweButton, BweButton is still rendered.

This is the button that is rendered by the preceding markup:

Figure 7.2 – Rendered BweButton using arbitrary parameters

The reason the button is now teal is due to the position of the @attributes directive
in the button's markup. When attributes are splatted onto an element, they are processed
from left to right. Therefore, if there are duplicate attributes assigned, the one that appears
later in the order will be the one that is used.

Arbitrary parameters are used to allow previously undefined attributes to be rendered
by the component. This is useful with components that support a large variety of
customizations, such as a component that includes an input element.

Now let's get a quick overview of the project that we are going to build in this chapter.

Project overview 173

Project overview
The Blazor WebAssembly application that we are going to build in this chapter is a Kanban
board. The Kanban board will have three dropzones: High Priority, Medium Priority,
and Low Priority. We will be able to drag and drop tasks between the dropzones and add
additional tasks.

This is a screenshot of the completed application:

Figure 7.3 – Kanban Board app

The build time for this project is approximately 60 minutes.

Creating the Kanban board project
The KanbanBoard project will be created by using the Empty Blazor WebAssembly
App project template. First, we will add the TaskItem class. Then, we will add
a Dropzone component. We will add three of the Dropzone components to the Home
page to create the Kanban board. Finally, we will add the ability to add new tasks to the
Kanban board.

Getting started with the project
We need to create a new Blazor WebAssembly app. We do this as follows:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt + S) textbox, enter Blazor and hit the Enter key.

174 Building a Kanban Board Using Events

The following screenshot shows the Empty Blazor WebAssembly App project
template that we created in Chapter 2, Building Your First Blazor WebAssembly
Application:

Figure 7.4 – Empty Blazor WebAssembly App project template

4.	 Select the Empty Blazor WebAssembly App project template and click the
Next button.

5.	 Enter KanbanBoard in the Project name textbox and then click the Create
button:

Figure 7.5 – Configure your new project dialog

Creating the Kanban board project 175

Tip
In the preceding example, we placed the KanbanBoard project into
the E:/Blazor folder. However, the location of this project is not important.

We have now created the KanbanBoard Blazor WebAssembly project.

Adding the classes
We need to add a TaskPriority enum and a TaskItem class. We do this as follows:

1.	 Right-click the KanbanBoard project and select the Add, New Folder option from
the menu.

2.	 Name the new folder Models.

3.	 Right-click the Models folder and select the Add, Class option from the menu.

4.	 Name the new class TaskPriority.

5.	 Click the Add button.

6.	 Replace the class with the following enum:

public enum TaskPriority

{

 High,

 Medium,

 Low

}

7.	 Right-click the Models folder and select the Add, Class option from the menu.

8.	 Name the new class TaskItem.

9.	 Click the Add button.

10.	 Add the following properties to the TaskItem class:

public string TaskName { get; set; }

public TaskPriority Priority { get; set; }

We have added the TaskPriority enum and the TaskItem class to represent the tasks
on the Kanban board. Next, we need to create the dropzones.

176 Building a Kanban Board Using Events

Creating the Dropzone component
We need to add a Dropzone component. We do this as follows:

1.	 Right-click the Shared folder and select the Add, Razor Component option from
the menu.

2.	 Name the new component Dropzone.

3.	 Click the Add button.

4.	 Remove the h3 element.

5.	 Add the following @using directive:

@using KanbanBoard.Models

6.	 Add the following markup:

<div class="priority">

 <h2>@Priority.ToString() Priority</h2>

 <div class="dropzone"

 ondragover="event.preventDefault();"

 @ondrop="OnDropHandler">

 @foreach (var item in TaskItems

 .Where(q => q.Priority == Priority))

 {

 }

 </div>

</div>

The preceding markup labels dropzone by its priority and allows elements to
be dropped into the element by preventing the default value of the ondragover
event. The OnDropHandler method is called when an element is dropped into
dropzone. Finally, it loops through all of the TaskItems class of the indicated
Priority.

7.	 Add the following markup within the @foreach loop:

<div class="draggable"

 draggable="true"

 @ondragstart="@(() => OnDragStartHandler(item))">

 @item.TaskName

Creating the Kanban board project 177

 @item.Priority

</div>

The preceding markup makes the div element draggable by setting the
draggable element to true. The OnDragStartHandler method is called
when the element is dragged.

8.	 Add the following parameters to the @code block:

[Parameter]

public List<TaskItem> TaskItems { get; set; }

[Parameter]

public TaskPriority Priority { get; set; }

[Parameter]

public EventCallback<TaskPriority> OnDrop { get; set; }

[Parameter]

public EventCallback<TaskItem> OnStartDrag { get; set; }

9.	 Add the following OnDropHandler method:

private void OnDropHandler()

{

 OnDrop.InvokeAsync(Priority);

}

The preceding code invokes the OnDrop method.

10.	 Add the following OnDragStartHandler method:

private void OnDragStartHandler(TaskItem task)

{

 OnStartDrag.InvokeAsync(task);

}

The preceding code invokes the OnStartDrag method.
We have added a Dropzone component. Now we need to add some styling to the
component.

178 Building a Kanban Board Using Events

Adding a style sheet
We will add a style sheet to the Dropzone component using CSS isolation. We do this as
follows:

1.	 Right-click the Shared folder and select the Add, New Item option from the
menu.

2.	 Enter css in the Search box.

3.	 Select Style Sheet.

4.	 Name the style sheet Dropzone.razor.css.

5.	 Click the Add button.

6.	 Enter the following styles:

Dropzone.razor.css
.draggable {

 margin-bottom: 10px;

 padding: 10px 25px;

 border: 1px solid #424d5c;

 cursor: grab;

 background: #ff6a00;

 color: #ffffff;

 border-radius: 5px;

 width: 16rem;

}

 .draggable:active {

 cursor: grabbing;

 }

.dropzone {

 padding: .75rem;

 border: 2px solid black;

 min-height: 20rem;

}

.priority {

Creating the Kanban board project 179

 min-width: 20rem;

 padding-right: 2rem;

}

We have finished styling the Dropzone component. Now we can put the Kanban board
together.

Creating the Kanban board
We need to add three dropzones to create our Kanban board, one dropzone for each of the
three types of task. We do this as follows:

1.	 Open the Pages\Index.razor page.

2.	 Add the following @using directive:

@using KanbanBoard.Models

3.	 Add the following markup:

<div class="row p-2">

 <Dropzone Priority="TaskPriority.High"

 TaskItems="TaskItems"

 OnDrop="OnDrop"

 OnStartDrag="OnStartDrag" />

 <Dropzone Priority="TaskPriority.Medium"

 TaskItems="TaskItems"

 OnDrop="OnDrop"

 OnStartDrag="OnStartDrag" />

 <Dropzone Priority="TaskPriority.Low"

 TaskItems="TaskItems"

 OnDrop="OnDrop"

 OnStartDrag="OnStartDrag" />

</div>

180 Building a Kanban Board Using Events

4.	 Add the following @code block:

@code {

 public TaskItem CurrentItem;

 List<TaskItem> TaskItems = new List<TaskItem>();

 protected override void OnInitialized()

 {

 TaskItems.Add(new TaskItem

 {

 TaskName = "Call Mom",

 Priority = TaskPriority.High

 });

 TaskItems.Add(new TaskItem

 {

 TaskName = "Buy milk",

 Priority = TaskPriority.Medium

 });

 TaskItems.Add(new TaskItem

 {

 TaskName = "Exercise",

 Priority = TaskPriority.Low

 });

 }

}

The preceding code initializes the TaskItems object with three tasks.

5.	 Add the OnStartDrag method to the @code block:

private void OnStartDrag(TaskItem item)

{

 CurrentItem = item;

}

The preceding code sets the value of CurrentItem to the item that is currently
being dragged. We will use this value when the item is dropped.

Creating the Kanban board project 181

6.	 Add the OnDrop method to the @code block:

private void OnDrop(TaskPriority priority)

{

 CurrentItem.Priority = priority;

}

The preceding code sets Priority of CurrentItem to the priority associated
with the dropzone that it is dropped into.

7.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

8.	 Drag and drop the tasks to change their priorities.

We have created a very simple Kanban board with three items. Let's add the ability to add
more items.

Creating the NewTask component
We need to add a NewTask component. We do this as follows:

1.	 Return to Visual Studio.

2.	 Right-click the Shared folder and select the Add, Razor Component option from
the menu.

3.	 Name the new component NewTask.

4.	 Click the Add button.

5.	 Remove the h3 element.

6.	 Add the following markup:

<div class="row p-3" style="max-width:950px">

 <div class="input-group mb-3">

 <label class="input-group-text"

 for="inputTask">

 Task

 </label>

 <input type="text"

 id="inputTask"

 class="form-control"

 @bind-value="@taskName"

182 Building a Kanban Board Using Events

 @attributes="InputParameters" />

 <button type="button"

 class="btn btn-outline-secondary"

 @onclick="OnClickHandler">

 Add Task

 </button>

 </div>

</div>

The preceding markup includes a label, a textbox, and a button.

This is a screenshot of the NewTask component:

Figure 7.6 – NewTask component

7.	 Add the following code to the @code block:

private string taskName;

[Parameter]

public EventCallback<string> OnSubmit { get; set; }

[Parameter(CaptureUnmatchedValues = true)]

public Dictionary<string, object>

 InputParameters{ get; set; }

8.	 Add the OnClickHandler method to the @code block:

private async Task OnClickHandler()

{

 if (!string.IsNullOrWhiteSpace(taskName))

 {

 await OnSubmit.InvokeAsync(taskName);

 taskName = null;

 }

}

The preceding code invokes the OnSubmit method and sets the taskName object
to null.

Creating the Kanban board project 183

We have now created the NewTask component. Next, we need to start using it.

Using the NewTask component
We need to add the NewTask component to the Home page. We do this as follows:

1.	 Open the Pages\Index.razor page.

2.	 Add the following markup below the @using directive:

<NewTask OnSubmit="AddTask"

 @attributes="InputAttributes" />

3.	 Add the following code to the @code block:

public Dictionary<string, object> InputAttributes = new
Dictionary<string, object>()

{

 { "maxlength", "25" },

 { "placeholder", "enter new task" },

 { "title", "This textbox is used to enter your

 tasks." }

};

4.	 Add the AddTask method to the @code block:

private void AddTask(string taskName)

{

 var taskItem = new TaskItem()

 {

 TaskName = taskName,

 Priority = TaskPriority.High

 };

 TaskItems.Add(taskItem);

}

The preceding code sets the priority of the new item to High and adds it to the
TaskItems object.

184 Building a Kanban Board Using Events

5.	 From the Build menu, select the Build Solution option.

6.	 Return to the browser.

7.	 Use Ctrl + R to refresh the browser.

8.	 Add a few new tasks.

9.	 Drag and drop the tasks to change their priorities.

We have added the ability to add new tasks to the Kanban board.

Summary
You should now be able to handle events in your Blazor WebAssembly app. Also, you
should be comfortable with using attribute splatting and arbitrary parameters.

In this chapter, we introduced event handling, attribute splatting, and arbitrary
parameters. After that, we used the Empty Blazor WebAssembly App project template
to create a new project. We added a Dropzone component to the application and used it
to create a Kanban board. Finally, we added the ability to add tasks to the Kanban board
while demonstrating both attribute splatting and arbitrary parameters.

Now that you know how to handle different types of events in your Blazor WebAssembly
app, you can create more responsive applications. And, since you can use a dictionary to
pass both explicitly declared attributes and implicit attributes to a component, you can
create components faster since you do not need to explicitly define each parameter.

In the next chapter, we will use SQL Server to build a task manager using the ASP.NET
Web API.

Questions
The following questions are provided for your consideration:

1.	 How could you update the Kanban board to allow the user to delete a task?

2.	 Why would you want to include an attribute in the dictionary used for attribute
splatting that is not defined on the component either explicitly or implicitly?

3.	 What is the base class of the DragEventArgs class?

Further reading 185

Further reading
The following resources provide more information concerning the topics covered in this
chapter:

•	 For more information on ASP.NET Core Blazor event handling, refer to
https://docs.microsoft.com/en-us/aspnet/core/blazor/
components/event-handling.

•	 For more information on Document Object Model (DOM) events, refer to
https://developer.mozilla.org/en-US/docs/Web/Events.

•	 For more information on the DragEventArgs class, refer to https://docs.
microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.
components.web.drageventargs.

https://docs.microsoft.com/en-us/aspnet/core/blazor/components/event-handling
https://docs.microsoft.com/en-us/aspnet/core/blazor/components/event-handling
https://developer.mozilla.org/en-US/docs/Web/Events
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.drageventargs
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.web.drageventargs

8
Building a Task
Manager Using

ASP.NET Web API
Most websites are not islands standing alone. They need a server. They rely on a server for
both data access and security, among other services.

In this chapter, we will learn how to create a hosted Blazor WebAssembly app. We will
learn how to use the HttpClient service to call web APIs, and we will also learn how to
use JSON helper methods to make requests in order to read, add, edit, and delete data.

The project that we create in this chapter will be a task manager. We will use a multi-
project architecture to separate the Blazor WebAssembly app from the ASP.NET Web API
endpoints. The hosted Blazor WebAssembly app will use JSON helper methods to read,
add, edit, and delete tasks that are stored on SQL Server. An ASP.NET core project will
provide the ASP.NET Web API endpoints.

In this chapter, we will cover the following topics:

•	 Understanding hosted applications

•	 Using the HttpClient service

188 Building a Task Manager Using ASP.NET Web API

•	 Using JSON helper methods

•	 Creating the TaskManager project

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free community edition of Visual Studio 2019, refer to
Chapter 1, Introduction to Blazor WebAssembly. You will also need access to a version of
SQL Server. For instructions on how to install the free edition of SQL Server 2019, refer to
Chapter 1, Introduction to Blazor WebAssembly.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter08.

The code in action video is available here: https://bit.ly/340Im6M.

Understanding hosted applications
When we create a new Blazor WebAssembly project by using Microsoft's Blazor
WebAssembly App project template, we have the option to create a hosted Blazor
WebAssembly app by checking the ASP.NET Core hosted checkbox.

The following screenshot highlights the ASP.NET Core hosted checkbox:

Figure 8.1 – Blazor WebAssembly App project template

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter08
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter08
https://bit.ly/340Im6M

Understanding hosted applications 189

The hosted Blazor WebAssembly app, created by the Blazor WebAssembly App project
template, includes the following three projects:

•	 Client project

•	 Server project

•	 Shared project

Client project
The client project is a client-side Blazor WebAssembly project. It is almost identical to
the standalone Blazor WebAssembly app we created in Chapter 2, Building Your First
Blazor WebAssembly Application, of this book. The only big difference is in how the data
is accessed. In the client project, the sample data is accessed from the server project using
Web API endpoints instead of a static file.

Server project
The server project is an ASP.NET Core project. This project is responsible for serving
the application. In addition to hosting the client app, the server project provides the
Web API endpoints.

Tip
In this scenario, the server project must be set as the start up project in the
solution.

Shared project
The shared project is also an ASP.NET Core project. It contains application logic that is
shared between the other two projects. In the past, we had to write validation code on
both the client and the server. We had to write JavaScript validation code for the client and
C# validation code for the server. Not surprisingly, sometimes the two validation models
did not match. The shared project solves that problem since all of the validation code is
kept in one location and one language.

By using a multi-project solution, we can create a more robust application. The shared
project defines the classes, and the client project uses the HttpClient service to make
requests for data from the server project.

190 Building a Task Manager Using ASP.NET Web API

Using the HttpClient service
HTTP is not just for serving web pages – it can also be used for serving data. These are the
HTTP methods that we will be using in this chapter:

•	 GET: This method is used to request one or more resources.

•	 POST: This method is used to create a new resource.

•	 PUT: This method is used to update a specified resource.

•	 DELETE: This method is used to delete a specified resource.

The HttpClient service is a preconfigured service for making HTTP requests from
a Blazor WebAssembly app. It is configured in the Program.cs file. The following code
is used to configure it:

builder.Services.AddScoped(sp => new HttpClient {

 BaseAddress = new

 Uri(builder.HostEnvironment.BaseAddress)

});

The HttpClient service is added to a page using dependency injection (DI). To use the
HttpClient service in a component, you must inject it by either using the @inject
directive or the Inject attribute. For more information on DI, see Chapter 6, Building
a Shopping Cart Using Application State.

The following code shows the two different ways to inject the HttpClient service into
a component:

@inject HttpClient Http

[Inject] public HttpClient Http { get; set; }

After we have injected an HttpClient service into a component, we can use the JSON
helper methods to send requests to a Web API.

Using JSON helper methods 191

Using JSON helper methods
There are three JSON helper methods. There is one for reading data, one for adding
data, and one for updating data. Since there is not one for deleting data, we will use the
HttpClient.DeleteAsync method to delete data:

Figure 8.2 – Relationship between the HTTP methods and the JSON helper methods

The preceding table indicates the relationship between the JSON helper methods and the
HTTP methods.

Tip
You can also use the HttpClient service and JSON helper methods to call
external web API endpoints. By way of an example, see Chapter 5, Building
a Weather App as a Progressive Web App (PWA).

GetFromJsonAsync
The GetFromJsonAsync method is used to read data. It does the following:

•	 Sends an HTTP GET request to the indicated URI.

•	 Deserializes the JSON response body to create the indicated object.

The following code returns a collection of TaskItem objects:

string requestUri = "TaskItems";

tasks = await

 Http.GetFromJsonAsync<IList<TaskItem>>(requestUri);

192 Building a Task Manager Using ASP.NET Web API

In the proceeding code, the type of object returned is IList<TaskItem>. We can also
use the GetFromJsonAsync method to get an individual object. The following code
returns a single TaskItem object where Id is the unique identifier of the object:

string requestUri = $"TaskItems/{Id}";

tasks = await

 Http.GetFromJsonAsync<TaskItem>(requestUri);

In the preceding code, the type of object returned is TaskItem.

PostAsJsonAsync
The PostAsJsonAsync method is used to add data. It does the following:

•	 Sends an HTTP POST request to the indicated URI. The request includes the
JSON-encoded content used to create the new data.

•	 Returns an HttpResponseMessage instance that includes both a status code
and data.

The following code creates a new TaskItem object:

string requestUri = "TaskItems";

var response = await

 Http.PostAsJsonAsync(requestUri, newTaskItem);

if (response.IsSuccessStatusCode)

{

 var task = await

 response.Content.ReadFromJsonAsync<TaskItem>();

};

In the preceding code, task is deserialized from the response if the HTTP response
is successful.

PutAsJsonAsync
The PutAsJsonAsync method is used to update data. It does the following:

•	 Sends an HTTP PUT request to the indicated URI. The request includes the
JSON-encoded content used to update the data.

•	 Returns an HttpResponseMessage instance that includes both a status code
and data.

Using JSON helper methods 193

The following code updates an existing TaskItem object:

string requestUri = $"TaskItems/{task.TaskItemId}";

var response = await

 Http.PutAsJsonAsync<TaskItem>(requestUri, updatedTaskItem);

if (response.IsSuccessStatusCode)

{

 var task = await

 response.Content.ReadFromJsonAsync<TaskItem>();

};

In the preceding code, task is deserialized from the response if the HTTP response
is successful.

HttpClient.DeleteAsync
The HttpClient.DeleteAsync method is used to delete data. It does the following:

•	 Sends an HTTP DELETE request to the indicated URI.

•	 Returns an HttpResponseMessage instance that includes both a status code
and data.

The following code deletes an existing TaskItem object:

string requestUri = $"TaskItems/{taskItem.TaskItemId}";

var response = await Http.DeleteAsync(requestUri);

if (!response.IsSuccessStatusCode)

{

 // handle error

};

The JSON helper methods make it easy to consume web APIs. We use them to read,
create, and update data. We use HttpClient.DeleteAsync to delete data.

Now, let's get a quick overview of the project that we are going to build in this chapter.

194 Building a Task Manager Using ASP.NET Web API

Project overview
In this chapter, we will build a Blazor WebAssembly app to manage tasks. We will be able
to view, add, edit, and delete tasks. The tasks will be stored in a SQL Server database.

This is a screenshot of the completed application:

Figure 8.3 – TaskManager project

The build time for this project is approximately 75 minutes.

Creating the TaskManager project
The TaskManager project will be created by using Microsoft's Blazor WebAssembly
App project template to create a hosted Blazor WebAssembly app. First, we will examine
the demo project created by the project template. Then, we will add a TaskItem class and
a TaskItemsController class. We will use Entity Framework migrations to create
a database in SQL Server. Finally, we will demonstrate how to read data, update data,
delete data, and add data using the HttpClient service.

Getting started with the project
We need to create a new Blazor WebAssembly app. We do this as follows:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt+S) textbox, enter Blazor and then hit the
Enter key.

Creating the TaskManager project 195

The following screenshot shows the Blazor WebAssembly App project template
that we will be using:

Figure 8.4 – Blazor WebAssembly App project template

4.	 Select the Blazor WebAssembly App project template and click the Next button.

5.	 Enter TaskManager in the Project name textbox and then click the Next button.

This is a screenshot of the dialog used to configure our new project:

Figure 8.5 – Configure your new project dialog

196 Building a Task Manager Using ASP.NET Web API

Tip
In the preceding example, we placed the TaskManager project into the E:/
Blazor folder. However, the location of this project is not important.

6.	 Select .NET 5.0 as the Target Framework.

7.	 Check the ASP.NET Core Hosted checkbox.

8.	 Click the Create button.

9.	 Right-click the TaskManager.Server project and select the Set as Startup
Project option from the menu.

You have created the TaskManager project. The following screenshot shows the three
projects that comprise the TaskManager project:

Figure 8.6 – Solution Explorer

Now we are all set to examine the hosted Blazor WebAssembly app.

Examining the hosted Blazor WebAssembly app
The hosted Blazor WebAssembly app includes a demo project. Let's run it to get an idea of
what it does. We do this as follows:

1.	 From the Debug menu, select the Start Without Debugging (Ctrl+F5) option to
run the project.

2.	 View the Home page.

3.	 View the Counter page.

4.	 View the Fetch data page.

5.	 Close the browser.

Before we can get started working on our TaskManager project, we need to remove the
demo project.

Creating the TaskManager project 197

Emptying the solution
To empty the solution, we need to delete some components, update a couple of
components, and delete both a controller and a class. We do this as follows:

1.	 Return to Visual Studio.

2.	 Delete all of the components in the TaskManager.Client.Pages folder, except
for Index.

3.	 Delete the TaskManager.Client.Shared\SurveyPrompt.razor file.

4.	 Open the TaskManager.Client.Shared\MainLayout.razor file.

5.	 Remove the About link from the top row of the layout by removing the following
markup:

<a href="http://blazor.net" target="_blank"

 class="ml-md-auto">

 About

6.	 Open the TaskManager.Client.Shared\NavMenu.razor file.

7.	 Remove the li elements for the Counter and Fetch data pages.

8.	 From the TaskManager.Server project, delete the Controllers\
WeatherForecastConroller.cs file.

9.	 From the TaskManager.Shared project, delete the WeatherForecast.cs file.

10.	 From the Build menu, select the Build Solution option.

We have prepared the solution by deleting the demo project. Now, we can start adding
our TaskManager-specific content. First, we will add a class to contain the tasks.

Adding the TaskItem class
We need to add the TaskItem class. We do this as follows:

1.	 Right-click the TaskManager.Shared project and select the Add, Class option
from the menu.

2.	 Name the new class TaskItem.

3.	 Click the Add button.

198 Building a Task Manager Using ASP.NET Web API

4.	 Make the class public by adding the public modifier:

public class TaskItem

5.	 Add the following properties to the TaskItem class:

public int TaskItemId { get; set; }

public string TaskName { get; set; }

public bool IsComplete { get; set; }

6.	 From the Build menu, select the Build Solution option.

We have added the TaskItem class. Next, we need to add an API controller for the
TaskItem class.

Adding the TaskItem API controller
We need to add a TaskItemsController class. We do this as follows:

1.	 Right-click the TaskManager.Server.Contollers folder and select the Add,
Controller option from the menu.

2.	 Select the API Controller with actions, using Entity Framework option:

Figure 8.7 – Add New Scaffolded Item dialog

Creating the TaskManager project 199

3.	 Click the Add button.

4.	 Set the Model class to TaskItem (TaskManager.Shared).

5.	 Click the Add data context button to open the Add Data Context dialog:

Figure 8.8 – Add Data Context dialog

6.	 Click the Add button to accept the default values.

7.	 Click the Add button on the Add API Controller with actions, using Entity
Framework dialog:

Figure 8.9 – Add API Controller with actions, using Entity Framework dialog

8.	 Update the route to the following:

[Route("[controller]")]

We have created the TaskItemsController class. Now we need to set up SQL Server.

200 Building a Task Manager Using ASP.NET Web API

Setting up SQL Server
We need to create a new database on SQL Server and add a table to contain the tasks.
We do this as follows:

1.	 Open the TaskManager.Server\appsettings.json file.

2.	 Update the connection string to point to your instance of SQL Server and change
the name of the database to TaskManager:

"ConnectionStrings": {

 "TaskManagerServerContext": "Server=TOI-WORK\\
SQLEXPRESS2019; Database=TaskManager; Trusted_
Connection=True; MultipleActiveResultSets=true"

}

The preceding code assumes that our server is named TOI-WORK\\
SQLEXPRESS2019 and the name of the database is TaskManager.

Important note
Although this example is using SQL Server Express 2019, it does not matter
what version of SQL Server you use.

3.	 From the Tools menu, select the NuGet Package Manager, Package Manager
Console option.

4.	 In Package Manager Console, change Default project to TaskManager.
Server.

5.	 Execute the following commands in Package Manager Console:

Add-Migration Init

Update-Database

The preceding commands use Entity Framework migrations to update SQL Server.

6.	 From the View menu, select SQL Server Object Explorer.

7.	 If you do not see the SQL Server instance that you are using for this project, click
the Add SQL Server button to connect it:

Creating the TaskManager project 201

Figure 8.10 – SQL Server Object Explorer

8.	 Navigate to TaskManager, Tables, dbo.TaskItem:

Figure 8.11 – TaskManager database

9.	 Right-click dbo.TaskItem and select the View Data option.

10.	 Pin the tab.

11.	 Enter a couple of tasks by completing the TaskName field and setting the
IsComplete field to False:

Figure 8.12 – Sample data

12.	 From the Debug menu, select the Start Without Debugging (Ctrl+F5) option to
run the project.

13.	 Add /taskitems to the address bar and then click Enter.

202 Building a Task Manager Using ASP.NET Web API

The following screenshot shows the JSON that is returned by
TaskItemsController:

Figure 8.13 – JSON returned by the TaskItem API controller

14.	 Close the browser.

We have demonstrated that TaskItemsController works. Now we can start working
on our client project.

Displaying the tasks
We need to fetch the list of tasks and display them to the user. We do this as follows:

1.	 Return to Visual Studio.

2.	 Right-click the TaskManager.Client.Pages folder and select the Add, Class
option from the menu.

3.	 Name the new class Index.razor.cs.

4.	 Click the Add button.

5.	 Add the partial modifier to the class:

public partial class Index

6.	 Add the following code to the Index class:

[Inject] public HttpClient Http { get; set; }

private IList<TaskItem> tasks;

private string error;

protected override async Task OnInitializedAsync()

{

 try

 {

 string requestUri = "TaskItems";

 tasks = await

 Http.GetFromJsonAsync<IList<TaskItem>>

 (requestUri);

Creating the TaskManager project 203

 }

 catch (Exception)

 {

 error = "Error Encountered";

 };

}

The preceding code uses the GetFromJsonAsync method to return the collection
of TaskItem objects.

7.	 Add the following using statements:

using Microsoft.AspNetCore.Components;

using System.Net.Http;

using System.Net.Http.Json;

using TaskManager.Shared;

8.	 Open the TaskManager.Client.Pages\Index.razor page.

9.	 Update the markup to the following:

@page "/"

@if (tasks == null)

{

 <p>Loading...</p>

}

else

{

 @foreach (var taskItem in tasks)

 {

 }

}

The preceding markup displays the loading message if tasks is null. Otherwise,
it loops through the collection of TaskItem objects in tasks.

10.	 Add the following markup to the @foreach loop:

<div class="d-flex col col-lg-3 border-bottom"

 @key="taskItem">

204 Building a Task Manager Using ASP.NET Web API

 <div class="p-2 flex-fill">

 <input type="checkbox"

 checked="@taskItem.IsComplete" />

 @taskItem.TaskName

 </div>

 <div class="p-1">

 <button class="btn btn-outline-danger btn-sm"

 title="Delete task">

 </button>

 </div>

</div>

The preceding markup displays a checkbox, the TaskName field, and a delete
button for each TaskItem class.

11.	 From the Debug menu, select the Start Without Debugging (Ctrl+F5) option to
run the project.

The following is a screenshot of the Home page:

Figure 8.14 – List of tasks

We have added a list of tasks to the Home page, but nothing happens when we click the
checkbox or the delete button. Next, we need to allow the user to mark a task as complete.

Completing the tasks
We will allow the user to mark a task as complete by clicking the checkbox next to the
name of the task. We do this as follows:

1.	 Return to Visual Studio.

2.	 Right-click the Pages folder and select the Add, New Item option from the menu.

3.	 Enter css in the Search box.

4.	 Select Style Sheet.

5.	 Name the file Index.razor.css.

6.	 Click the Add button.

Creating the TaskManager project 205

7.	 Enter the following style:

.completed-task {

 text-decoration: line-through;

}

8.	 Open the Index.razor file.

9.	 Update the span element used to display the task's name to the following:

<span class="@((taskItem.IsComplete? "completed-task" :
""))">

 @taskItem.TaskName

The preceding markup will set the class of the span element to completed-task
when the task is completed.

10.	 Add the following markup to the checkbox:

@onchange="@(()=>CheckboxChecked(taskItem))"

11.	 Open the TaskManager.Client.Pages\Index.razor.cs file.

12.	 Add the following CheckboxChecked method:

private async Task CheckboxChecked(TaskItem task)

{

 task.IsComplete = !task.IsComplete;

 string requestUri =

 $"TaskItems/{task.TaskItemId}";

 var response = await

 Http.PutAsJsonAsync<TaskItem>(requestUri,

 task);

 if (!response.IsSuccessStatusCode)

 {

 error = response.ReasonPhrase;

 };

}

The preceding code uses the PutAsJsonAsync method to update the indicated
TaskItem class.

206 Building a Task Manager Using ASP.NET Web API

13.	 From the Build menu, select the Build Solution option.

14.	 Return to the browser.

15.	 Use Ctrl+R to refresh the browser.

16.	 Mark one of the tasks as complete by clicking the checkbox next to it.

The following screenshot shows a task that has been completed:

Figure 8.15 – Completed task

17.	 Return to Visual Studio.

18.	 Select the dbo.TaskItem [Data] tab that we pinned earlier.

19.	 Click the Refresh (Shift+Alt+R) button to verify that the IsComplete field has
been updated.

When a user checks the checkbox next to a task, the UI is updated and the SQL Server
database is updated. Next, we need to add the ability to delete tasks.

Deleting the tasks
We need to allow users to delete tasks. We do this as follows:

1.	 Open the Index.razor file.

2.	 Update the button element to the following by adding the highlighted code:

<button class="btn btn-outline-danger btn-sm"

 title="Delete task"

 @onclick="@(()=>DeleteTask(taskItem))">

</button>

3.	 Open the TaskManager.Client.Pages\Index.razor.cs file.

4.	 Add the following DeleteTask method:

private async Task DeleteTask(TaskItem taskItem)

{

 tasks.Remove(taskItem);

 string requestUri =

 $"TaskItems/{taskItem.TaskItemId}";

Creating the TaskManager project 207

 var response = await Http.DeleteAsync(requestUri);

 if (!response.IsSuccessStatusCode)

 {

 error = response.ReasonPhrase;

 };

}

The preceding code uses the Http.DeleteAsync method to delete the indicated
TaskItem class.

5.	 From the Build menu, select the Build Solution option.

6.	 Return to the browser.

7.	 Use Ctrl+R to refresh the browser.

8.	 Click the delete button to delete one of the tasks.

9.	 Return to Visual Studio.

10.	 Select the dbo.TaskItem [Data] tab.

11.	 Click the Refresh (Shift+Alt+R) button to verify that one of the tasks has
been deleted.

We have added the ability to delete tasks. Now we need to add the ability to add new tasks.

Adding new tasks
We need to add the ability to add new tasks. We do this as follows:

1.	 Open the Index.razor file.

2.	 Add the following markup before the @foreach loop:

<div class="d-flex col col-lg-3 mb-4">

 <input placeholder="Enter Task" @bind="newTask" />

 <button class="btn btn-success"

 @onclick="AddTask">Submit</button>

</div>

3.	 Open the TaskManager.Client.Pages\Index.razor.cs file.

208 Building a Task Manager Using ASP.NET Web API

4.	 Add the following variable:

private string newTask;

5.	 Add the following AddTask method:

private async Task AddTask()

{

 if (!string.IsNullOrWhiteSpace(newTask))

 {

 TaskItem newTaskItem = new TaskItem

 {

 TaskName = newTask,

 IsComplete = false

 };

 tasks.Add(newTaskItem);

 string requestUri = "TaskItems";

 var response = await

 Http.PostAsJsonAsync(requestUri,

 newTaskItem);

 if (response.IsSuccessStatusCode)

 {

 newTask = string.Empty;

 var task =

 await response.Content.ReadFromJsonAsync

 <TaskItem>();

 }

 else

 {

 error = response.ReasonPhrase;

 };

 };

}

The preceding code uses the PostAsJsonAsync method to create a new
TaskItem class. The returned TaskItem class is deserialized into the
task variable.

Summary 209

Tip
If you need the Id property of the new TaskItem class , you can obtain it
from the task variable.

6.	 From the Build menu, select the Build Solution option.

7.	 Return to the browser.

8.	 Use Ctrl+R to refresh the browser.

9.	 Add a few new tasks.

10.	 Return to Visual Studio.

11.	 Select the dbo.TaskItem [Data] tab.

12.	 Click the Refresh (Shift+Alt+R) button to verify that the tasks have been added to
the SQL Server database.

We have now added the ability to add new tasks.

Summary
You should now be able to create a hosted Blazor WebAssembly app that uses
the ASP.NET Web API to update data in a SQL Server database.

In this chapter, we introduced hosted Blazor WebAssembly apps, the HttpClient
service, and the JSON helper methods used to read, create, and update data. We also
demonstrated how to delete data using the HttpClient.DeleteAsync method.

After that, we used Microsoft's Blazor WebAssembly App project template to create a
hosted Blazor WebAssembly app. We examined the demo project and then deleted it
from the multi-project solution. We added both a TaskItem class and a TaskItem
API controller. Next, we configured SQL Server by updating the connection string to the
database and using Entity Framework migrations. Finally, we used the HttpClient
service to read the list of tasks, update a task, delete a task, and add new tasks.

We can apply our new skills to create a hosted Blazor WebAssembly app that is part of a
multi-project solution and use the ASP.NET Web API to read, create, update, and
delete data.

In the next chapter, we will build an expense tracker using the EditForm component.

210 Building a Task Manager Using ASP.NET Web API

Questions
The following questions are provided for your consideration:

1.	 What are the benefits of using a hosted Blazor WebAssembly project versus
a standalone Blazor WebAssembly project?

2.	 Is it better to use an @code block for the code or to use a partial class for the code?

Further reading
The following resources provide more information concerning the topics covered in
this chapter:

•	 For more information on the HttpClient class, refer to https://docs.
microsoft.com/en-us/dotnet/api/system.net.http.httpclient.

•	 For more information on calling a web API from Blazor WebAssembly, refer to
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-
web-api.

•	 For more information on the extension methods that perform serialization
and deserialization using System.Text.Json, refer to https://docs.
microsoft.com/en-us/dotnet/api/system.net.http.json.

•	 For more information on Entity Framework, refer to https://docs.
microsoft.com/ef.

https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-web-api
https://docs.microsoft.com/en-us/aspnet/core/blazor/call-web-api
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.json
https://docs.microsoft.com/ef
https://docs.microsoft.com/ef

9
Building an Expense

Tracker Using
the EditForm

Component
Most applications require some data input. The Blazor WebAssembly framework includes
many built-in components for inputting and validating data.

In this chapter, we will learn how to use the EditForm component, the various built-in
input components, and the built-in input validation components.

The project that we'll create in this chapter will be a travel expense tracker. We will use
a multi-project architecture to separate the Blazor WebAssembly app from the ASP.NET
Web API endpoints. The page used to add and edit expenses will use the EditForm
component as well as many of the built-in input components. It will also use the built-in
validation components. We will learn how to use the built-in components to add data
input, validation, and submission to any Blazor WebAssembly app.

212 Building an Expense Tracker Using the EditForm Component

In this chapter, we will cover the following topics:

•	 The EditForm component

•	 Using the built-in input components

•	 Using the validation components

•	 Creating the ExpenseTracker project

Technical requirements
To complete this project, you need to have Visual Studio 2019 installed on your PC. For
instructions on how to install the free community edition of Visual Studio 2019, refer to
Chapter 1, Introduction to Blazor WebAssembly. You will also need access to a version of
SQL Server. For instructions on how to install the free edition of SQL Server 2019, refer to
Chapter 1, Introduction to Blazor WebAssembly.

The source code for this chapter is available in the following GitHub repository:
https://github.com/PacktPublishing/Blazor-WebAssembly-by-
Example/tree/main/Chapter09.

The code in action video is available here: https://bit.ly/2T5UfpR.

Overview of the EditForm component
In the previous chapters of this book, we used the standard HTML form element to
collect user input. However, the Blazor WebAssembly framework provides an enhanced
version of the standard HTML form element called the EditForm component.

The EditForm component not only manages forms, it also coordinates both validation
and submission events. The following code shows an empty EditForm element:

<EditForm Model="expense" OnValidSubmit="HandleValidSubmit">

</EditForm>

In the preceding code, the Model property specifies the top-level model object for the
form. The OnValidSubmit property specifies the callback that will be invoked when the
form is submitted without any validation errors.

https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter09
https://github.com/PacktPublishing/Blazor-WebAssembly-by-Example/tree/main/Chapter09
https://bit.ly/2T5UfpR

Using the built-in input components 213

There are three different callbacks that are associated with form submission:

•	 OnValidSubmit
•	 OnInvalidSubmit
•	 OnSubmit

We can use the OnValidSubmit and OnInvalidSubmit callbacks together
or separately. Or, we can use the OnSubmit callback by itself. If we use the OnSubmit
callback, we are responsible for performing the form validation. Otherwise, the form
validation is performed by the EditForm component.

Tip
If we set an OnSubmit callback, any callbacks set using OnValidSubmit
or OnInvalidSubmit are ignored.

There are quite a few built-in input components that we can use in conjunction with the
EditForm component.

Using the built-in input components
The following table lists the built-in input components along with the HTML that
they render:

Figure 9.1 – Built-in input components

214 Building an Expense Tracker Using the EditForm Component

All of the built-in input components are able to receive and validate user inputs when
placed within an EditForm element. They inherit from the abstract InputBase class.
We can add additional input components by creating components that also inherit from
the InputBase class.

The input data is validated both when the form is submitted and when the data is changed.

Using the validation components
Input validation is an important aspect of every application since it prevents users from
entering invalid data. The Blazor WebAssembly framework uses data annotations for
input validation. There are over 30 built-in data annotation attributes. This is a list of the
ones that we will be using in this project:

•	 Required: This attribute specifies that a value is required. It is the most commonly
used attribute.

•	 Display: This attribute specifies the string to display in error messages.

•	 MaxLength: This attribute specifies the maximum string length allowed.

•	 Range: This attribute specifies the numeric range constraints of the value.

The following code demonstrates the use of a few data annotations:

[Required]

public DateTime? Date { get; set; }

[Required]

[Range(0, 500, ErrorMessage = "The {0} field must be < {2}.")]

public decimal? Amount { get; set; }

There are two built-in validation components:

•	 ValidationSummary

•	 ValidationMessage

Using the validation components 215

The ValidationSummary component summarizes the validation messages, while
the ValidationMessage component shows the validation messages for individual
components. An EditForm component can include both types of validation
components. However, in order to use either type of validation component, we must add
DataAnnotationsValidator to the EditForm component.

The following screenshot shows the results of both a ValidationSummary component
and individual ValidationMesssage components:

Figure 9.2 – Validation components

Now let's get a quick overview of the project that we are going to build in this chapter.

216 Building an Expense Tracker Using the EditForm Component

Project overview
In this chapter, we will build a project to track travel expenses. We will be able to view,
add, and edit expenses. The expenses will be stored in a SQL Server database.
This is a screenshot of the Add/Edit Expense page from the completed application.

Figure 9.3 – Add/Edit Expense page

The build time for this project is approximately 90 minutes.

Creating the ExpenseTracker project 217

Creating the ExpenseTracker project
The ExpenseTracker project will be created by using Microsoft's Blazor
WebAssembly App project template to create a hosted Blazor WebAssembly app. First,
we will remove the demo project. Then, we will add the classes and API controllers
needed for our project. We will add a table to the Home page to display the current list of
expenses. Finally, we will use the EditForm component in conjunction with many of the
built-in input components to add and edit the expenses.

Getting started with the project
We need to create a new Blazor WebAssembly app. We do this as follows:

1.	 Open Visual Studio 2019.

2.	 Click the Create a new project button.

3.	 In the Search for templates (Alt + S) textbox, enter Blazor and hit the Enter key.

The following screenshot shows the Blazor WebAssembly App project template
that we will be using.

Figure 9.4 – Blazor WebAssembly App project template

4.	 Select the Blazor WebAssembly App project template and then click the Next button.

218 Building an Expense Tracker Using the EditForm Component

5.	 Enter ExpenseTracker in the Project name textbox and click the Next button:

Figure 9.5 – Configure your new project dialog

Tip
In the preceding example, we placed the ExpenseTracker project into the
E:/Blazor folder. However, the location of this project is not important.

6.	 Select .NET 5.0 as the Target Framework.

7.	 Check the ASP.NET Core Hosted checkbox.

When you check the ASP.NET Core Hosted checkbox, the project template will
create a multi-project solution. For more information on hosted applications, refer
to Chapter 8, Building a Task Manager Using ASP.NET Web API.

8.	 Click the Create button.

9.	 Right-click the ExpenseTracker.Server project and select the Set as Startup
Project option from the menu.

You have created the ExpenseTracker Blazor WebAssembly project. The project that is
created using the project template for hosted applications includes a demo project. Before
we can get started, we need to remove the demo project.

Creating the ExpenseTracker project 219

Removing the demo project
To remove the demo project, we need to delete some components, update a couple of
components, and delete both a controller and a class. We do this as follows:

1.	 Delete all of the components in the ExpenseTracker.Client.Pages folder,
except for Index.

2.	 Delete the ExpenseTracker.Client.Shared\SurveyPrompt.razor file.
3.	 Open the ExpenseTracker.Client.Shared\MainLayout.razor file.
4.	 Remove the About link from the top row of the layout by removing the following

markup:

<a href="http://blazor.net" target="_blank"

 class="ml-md-auto">

 About

5.	 Open the ExpenseTracker.Client.Shared\NavMenu.razor file.
6.	 Remove the li elements for the Counter and Fetch data pages.
7.	 From the ExpenseTracker.Server project, delete the Controllers\

WeatherForecastConroller.cs file.
8.	 From the ExpenseTracker.Shared project, delete the WeatherForecast.

cs file.
9.	 From the Build menu, select the Build Solution option.

We have prepared the solution by removing the demo project. Now, we can start adding
our ExpenseTracker specific content. First, we need to add a couple of classes.

Adding the classes
We need to add both an ExpenseType class and an Expense class. We do this as follows:

1.	 Right-click the ExpenseTracker.Shared folder and select the Add, Class
option from the menu.

2.	 Name the new class ExpenseType.
3.	 Click the Add button.
4.	 Make the class public by adding the public modifier:

public class ExpenseType

220 Building an Expense Tracker Using the EditForm Component

5.	 Add the following properties to the ExpenseType class:

public int Id { get; set; }

public string Type { get; set; }

6.	 Right-click the ExpenseTracker.Shared folder and select the Add, Class
option from the menu.

7.	 Name the new class Expense.
8.	 Click the Add button.
9.	 Make the class public by adding the public modifier:

public class Expense

10.	 Add the following using statement:

using System.ComponentModel.DataAnnotations;

11.	 Add the following properties to the Expense class:

public int Id { get; set; }

[Required]

public DateTime? Date { get; set; }

[Required]

[MaxLength(100)]

public string Vendor { get; set; }

public string Description { get; set; }

[Required]

[Display(Name = "Expense Type")]

public int? ExpenseTypeId { get; set; }

[Required]

[Range(0, 500, ErrorMessage = "The {0} field must be <=
{2}.")]

public decimal? Amount { get; set; }

public bool Paid { get; set; }

Creating the ExpenseTracker project 221

In the preceding code, we have used data annotations to add some simple data
validation. Date, Vendor, ExpenseTypeId, and Amount are all required.
The maximum length of Vendor is 100 characters. The display name for
ExpenseTypeId is Expense Type. Amount of the expense is capped at 500.

12.	 From the Build menu, select the Build Solution option.

We have added both the ExpenseType class and the Expense class. Now we need to
configure the Web API endpoints.

Adding the API controllers
We need to add an API controller for each of the new classes. We do this as follows:

1.	 Right-click the ExpenseTracker.Server.Contollers folder and select the
Add, Controller option from the menu.

2.	 Select the API Controller with actions, using Entity Framework option.
3.	 Click the Add button.
4.	 Set Model class to ExpenseType (ExpenseTracker.Shared).
5.	 Click the Add data context button to open the Add Data Context dialog:

Figure 9.6 – Add Data Context dialog

6.	 Click the Add button to accept the default values.

222 Building an Expense Tracker Using the EditForm Component

7.	 Click the Add button:

Figure 9.7 – Add API Controller with actions, using Entity Framework dialog

8.	 Update the route to the following:

[Route("[controller]")]

9.	 Right-click the ExpenseTracker.Server.Contollers folder and select the
Add, Controller option from the menu.

10.	 Select the API Controller with actions, using Entity Framework option.

11.	 Click the Add button.

12.	 Set Model class to Expense (ExpenseTracker.Shared).

13.	 Click the Add button.

14.	 Update the route to the following:

[Route("[controller]")]

We have added two new controllers to provide the API endpoints that our application will
use. Next, we need to create the SQL Server database.

Creating the ExpenseTracker project 223

Creating the SQL Server database
We need to create the SQL Server database and add two tables to it. We do this as follows:

1.	 Open the ExpenseTracker.Server\appsettings.json file.

2.	 Update the connection string to point to your instance of SQL Server and change
the name of the database to ExpenseTracker:

"ConnectionStrings": {

 "ExpenseTrackerServerContext": "Server=TOI-WORK\\
SQLEXPRESS2019; Database=ExpenseTracker; Trusted_
Connection=True; MultipleActiveResultSets=true"

}

The preceding code assumes that our server is named TOI-WORK\\
SQLEXPRESS2019 and the name of the database is ExpenseTracker.

Important note
Although the example is using SQL Server Express 2019, it does not matter
what version of SQL Server you use.

3.	 Open the ExpenseTracker.Server.Data\
ExpenseTrackerServerContext.cs file.

4.	 Add the following OnModelCreating method:

protected override void OnModelCreating
 (ModelBuilder modelBuilder)
{
 modelBuilder.Entity<ExpenseType>().HasData(
 new ExpenseType { Type = "Airfare", Id = 1 },
 new ExpenseType { Type = "Lodging", Id = 2 },
 new ExpenseType { Type = "Meal", Id = 3 },
 new ExpenseType { Type = "Other", Id = 4 }
);
}

The preceding code will seed the ExpenseType table.

224 Building an Expense Tracker Using the EditForm Component

5.	 From the Tools menu, select the NuGet Package Manager, Package Manager
Console option.

6.	 In the Package Manager Console, change Default project to
ExpensesManager.Server.

7.	 Execute the following commands in the Package Manager Console:

Add-Migration Init
Update-Database

The preceding commands use Entity Framework migrations to update SQL Server.

8.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

9.	 Add /expensetypes to the address bar and click Enter.

The following screenshot shows the JSON that is returned by
ExpenseTypesController.

Figure 9.8 – JSON returned by the ExpenseTypes API controller

10.	 Close the browser.

We have created a new database on SQL Server, added two tables, and populated one
of the tables with seed data. After we finished setting up SQL Server, we tested that
ExpenseTypesController works. Finally, we are ready to create a component to
display the expenses.

Viewing the expenses
We need to add a table to display the list of expenses. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the ExpenseTracker.Client.Pages\Index.razor page.

3.	 Update the markup to the following:

@page "/"

@using ExpenseTracker.Shared

@inject HttpClient Http

Creating the ExpenseTracker project 225

<h2>Expenses</h2>

@if (expenses == null)

{

 <p>Loading...</p>

}

else if (expenses.Count == 0)

{

 <div>None Found</div>

}

else

{

}

@code{

 IList<Expense> expenses;

}

The preceding code defines expenses as an IList<Expense> and checks to see
if it is null or empty.

4.	 Add the following OnInitializedAsync method to the @code block.

protected override async Task OnInitializedAsync()

{

 expenses = await Http.GetFromJsonAsync

 <IList<Expense>>("Expenses");

}

The preceding code populates the expenses object.

5.	 Add the following table to the else statement:

<table class="table">

</table>

6.	 Add the following thead element to table:

<thead>

 <tr>

 <th></th>

226 Building an Expense Tracker Using the EditForm Component

 <th>#</th>

 <th>Date</th>

 <th>Vendor</th>

 <th class="text-right">Amount</th>

 </tr>

</thead>

7.	 Add the following tbody element to table:

<tbody>

 @foreach (var item in expenses)

 {

 <tr class="@(item.Paid ? "" : "table-danger")">

 <td>

 Edit

 </td>

 <td>@item.Id</td>

 <td>@item.Date.Value.ToShortDateString()</td>

 <td>@item.Vendor</td>

 <td class="text-right">@item.Amount</td>

 </tr>

 }

</tbody>

The preceding code loops through each of the Expense objects in the expenses
object and displays them as rows in a table. If the expense is not yet paid, the row is
highlighted in red by using the table-danger class.

8.	 From the Debug menu, select the Start Without Debugging (Ctrl + F5) option to
run the project.

The following screenshot shows the empty Home page:

Figure 9.9 – Empty Home page

Creating the ExpenseTracker project 227

We have added the ability to display the expenses in a table. Next, we need to add the
ability to add expenses.

Adding the ExpenseEdit component
We need to add a component to enable us to add and edit expenses. We do this as follows:

1.	 Return to Visual Studio.

2.	 Open the ExpenseTracker.Client.Shared\NavMenu.razor page.

3.	 Add the following markup to the ul element:

<li class="nav-item px-3">

 <NavLink class="nav-link" href="expense">

 <span class="oi oi-home"

 aria-hidden="true">

 Add Expense

 </NavLink>

4.	 Right-click the ExpenseTracker.Client.Pages folder and select the Add,
Razor Component option from the menu.

5.	 Name the new component ExpenseEdit.

6.	 Click the Add button.

7.	 Update the markup to the following:

@page "/expense"

@page "/expense/{id:int}"

@using ExpenseTracker.Shared

@inject HttpClient Http

@inject NavigationManager Nav

<h3>Add/Edit Expense</h3>

@if (!ready)

{

 <p>Loading...</p>

}

228 Building an Expense Tracker Using the EditForm Component

else

{

 <EditForm Model="expense"

 OnValidSubmit="HandleValidSubmit">

 </EditForm>

 <div>@error</div>

}

The preceding code displays EditForm if the component is ready.

8.	 Add the following @code block:

@code {

 [Parameter] public int id { get; set; }

 private bool ready;

 private string error;

 private Expense;

 private IList<ExpenseType> types;

}

9.	 Add the following OnInitializedAsync method to the @code block:

protected override async Task OnInitializedAsync()

{

 types = await Http.GetFromJsonAsync

 <IList<ExpenseType>>("ExpenseTypes");

 if (id == 0)

 {

 expense = new Expense();

 }

 else

 {

 expense = await Http.GetFromJsonAsync

 <Expense>($"Expenses/{id}");

 }

Creating the ExpenseTracker project 229

 ready = true;

}

The preceding code initializes both the types object and the expense object.
Once they have both been initialized, the value of ready is set to true.

10.	 Add the following HandleValidSubmit method to the @code block:

private async Task HandleValidSubmit()

{

 HttpResponseMessage response;

 if (expense.Id == 0)

 {

 response = await Http.PostAsJsonAsync

 ("Expenses", expense);

 }

 else

 {

 string requestUri = $"Expenses/{expense.Id}";

 response = await Http.PutAsJsonAsync

 (requestUri, expense);

 };

 if (response.IsSuccessStatusCode)

 {

 Nav.NavigateTo("/");

 }

 else

 {

 error = response.ReasonPhrase;

 };

}

The preceding code adds new expenses by using the PostAsJsonAsync method
and updates existing expenses by using the PutAsJsonAsync method. If the
relevant method is successful, the user is returned to the Home page. Otherwise, an
error message is displayed.

We have completed the code for this component, but EditForm is still empty. We need to
add some markup to EditForm.

230 Building an Expense Tracker Using the EditForm Component

Adding the input components
We need to add input components to the EditForm element. We do this as follows:

1.	 Add the following markup to EditForm to input Date:
<div>

 <label>

 Date

 <InputDate @bind-Value="expense.Date"

 class="form-control" />

 </label>

</div>

2.	 Add the following markup to EditForm to input Vendor:

<div>

 <label class="d-block">

 Vendor

 <InputText @bind-Value="expense.Vendor"

 class="form-control" />

 </label>

</div>

3.	 Add the following markup to EditForm to input Description:

<div>

 <label class="d-block">

 Description

 <InputTextArea @bind-Value=

 "expense.Description"

 class="form-control" />

 </label>

</div>

4.	 Add the following markup to EditForm to input ExpenseTypeId:

<div>

 <label class="d-block">

 Type

 <InputSelect @bind-Value=

 "expense.ExpenseTypeId"

Creating the ExpenseTracker project 231

 class="form-control">

 <option value=""></option>

 @foreach (var item in types)

 {

 <option value="@item.Id">

 @item.Type

 </option>

 }

 </InputSelect>

 </label>

</div>

5.	 Add the following markup to EditForm to input Amount:

<div>

 <label>

 Amount

 <InputNumber @bind-Value="expense.Amount"

 class="form-control" />

 </label>

</div>

6.	 Add the following markup to EditForm to input Paid:

<div>

 <label>

 Paid

 <InputCheckbox @bind-Value="expense.Paid"

 class="form-control" />

 </label>

</div>

7.	 Add the following markup for the Submit button:

<div class="pt-2 pb-2">

 <button type="submit"

 class="btn btn-primary mr-auto">

 Save

 </button>

</div>

232 Building an Expense Tracker Using the EditForm Component

8.	 Add the following markup to add the validation summary:

<DataAnnotationsValidator />

<ValidationSummary />

9.	 From the Build menu, select the Build Solution option.

10.	 Return to the browser.

11.	 Use Ctrl + R to refresh the browser.

12.	 Select the Add Expense option from the menu.

13.	 Click the Save button.

The following screenshot shows the validation errors:

Figure 9.10 – Data validation for the ExpenseEdit component

Summary 233

14.	 Add an expense.

15.	 Click the Save button.

We have completed the expense tracker project.

Summary
You should now be able to use the EditForm component in conjunction with the
built-in input components to input data. You should also be comfortable with the built-in
validation components.

In this chapter, we introduced the built-in EditForm component, various input
components, and validation components. After that, we used the Blazor WebAssembly
App project template to create a multi-project solution. We added a couple of classes and
API controllers. Next, we configured SQL Server by updating the connection string to the
database and using Entity Framework migrations. We updated the Home page to display the
list of expenses. Finally, we added a new page that includes an EditForm component and
many of the built-in input components in order to input, validate, and submit the expenses.

We can apply our new skills to add data input, validation, and submission to any Blazor
WebAssembly app.

The next step is to start building your own web apps. To stay up to date and learn more
about Blazor WebAssembly, visit https://blazor.net, and read the ASP.NET Blog at
https://devblogs.microsoft.com/aspnet.

We hope you enjoyed the book and wish you every success!

Questions
The following questions are provided for your consideration:

1.	 What is the advantage of using the built-in input components?

2.	 What additional input components would you like to add to the list of built-in input
components that are already provided by the framework?

https://blazor.net
https://devblogs.microsoft.com/aspnet

234 Building an Expense Tracker Using the EditForm Component

Further reading
The following resources provide more information concerning the topics in this chapter:

•	 For more information on ASP.NET Core component forms, refer to https://
docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.
components.forms.

•	 For more information on data annotations, refer to https://docs.
microsoft.com/en-us/dotnet/api/system.componentmodel.
dataannotations.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms
https://docs.microsoft.com/en-us/dotnet/api/microsoft.aspnetcore.components.forms
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations
https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.dataannotations

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

236 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

An Atypical ASP.NET Core 5 Design Patterns Guide

Carl-Hugo Marcotte

ISBN: 978-1-78934-609-1

•	 Apply the SOLID principles for building flexible and maintainable software
•	 Get to grips with .NET 5 dependency injection
•	 Work with GoF design patterns such as strategy, decorator, and composite
•	 Explore the MVC patterns for designing web APIs and web applications

using Razor
•	 Discover layering techniques and tenets of clean architecture
•	 Become familiar with CQRS and vertical slice architecture as an alternative

to layering
•	 Understand microservices, what they are, and what they are not
•	 Build ASP.NET UI from server-side to client-side Blazor

https://www.packtpub.com/product/an-atypical-asp-net-core-5-design-patterns-guide/9781789346091

Why subscribe? 237

C# 9 and .NET 5 – Modern Cross-Platform Development - Fifth Edition

Mark J. Price

ISBN: 978-1-80056-810-5

•	 Build your own types with object-oriented programming
•	 Query and manipulate data using LINQ
•	 Build websites and services using ASP.NET Core 5
•	 Create intelligent apps using machine learning
•	 Use Entity Framework Core and work with relational databases
•	 Discover Windows app development using the Universal Windows Platform

and XAML
•	 Build rich web experiences using the Blazor framework
•	 Build mobile applications for iOS and Android using Xamarin.Forms

https://www.packtpub.com/product/c-9-and-net-5-modern-cross-platform-development-fifth-edition/9781800568105

238 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

http://authors.packtpub.com
http://authors.packtpub.com

Leave a review - let other readers know what you think 239

Hello!

I am Toi, author of Blazor WebAssembly by Example. I hope you enjoyed reading
my book and that you found the book's projects a practical way for you to learn the
fundamentals about the Blazor WebAssembly framework.

It would really help me (and other potential readers!) if you would leave a review on
Amazon to share your thoughts on my book.

Your review will help me understand what has worked well in this book, as well as what
could be improved upon for future editions. So, I would really appreciate the feedback.

Best Wishes,

Toi B. Wright

Index

Symbols
.NET

invoking, from JavaScript 89-92
.NET 5.0

installing 11
.NET 5.0 Installer

URL 11
.NET Foundation 2
.NET Framework 2

A
application state 146
AppState pattern 146
arbitrary parameters 171, 172
attribute splatting 169, 170

B
Blazor framework, benefits

about 2
.NET Framework 2
Razor syntax 3
single-page application

(SPA) framework 2
tools 3

Blazor Server
about 4
advantages 4
disadvantages 5

Blazor Server web app 7
Blazor WebAssembly

about 5, 6
advantages 6
disadvantages 7
routing 22

Blazor WebAssembly application
building 120
overview 29

Bootstrap 4
reference link 38

built-in input components
using 213, 214

C
Cache object 116
CacheStorage API

methods 115, 116
using 115

Cascading Style Sheets (CSS) 35, 63

242 Index

control structures, Razor syntax
about 26
conditionals 26, 27
loops 27, 28

CSS isolation
about 63
child components, supporting 65
enabling 63, 64

catch-all route parameters 24
custom Blazor WebAssembly

project template
creating 49-52
empty Blazor project, creating 50
updating 53, 54
using 54, 55

D
Demo Blazor WebAssembly project

component, using 44, 45
creating 30-32
parameters, adding to component 45
parameter, using with attribute 46, 47
partial classes, using to separate

markup from code 48, 49
routable Razor components,

examining 40
route parameter, adding 47, 48
running 32-34
shared Razor components,

examining 37
structure, examining 34

Demo Blazor WebAssembly
project structure

App component 36
examining 34, 35
_Imports.razor file 37
Pages folder 36

Shared folder 36
wwwroot folder 35

dependency injection (DI)
about 146, 190
container 147
service lifetime 147

Document Object Model
(DOM) 2, 20, 111

E
EditForm component

overview 212, 213
EventCallback parameters 61, 62
event handling

about 166, 167
default actions, preventing 168, 169
lambda expression 168

ExpenseTracker project
API controllers, adding 221, 222
classes, adding 219-221
creating 217
demo project, removing 219
ExpenseEdit component,

adding 227-229
expenses, viewing 224-226
input components, adding 230-233
overview 216
SQL Server database, creating 223, 224
working with 217, 218

Export Template Wizard 51

G
Geolocation API

using 116-118
GeolocationPosition object

properties 117

Index 243

GetFromJsonAsync method
using 191, 192

Global Positioning System (GPS) 116

H
hosted Blazor WebAssembly app

client project 189
server project 189
shared project 189
tasks, adding 188, 189

hosting models
about 3, 4
Blazor Server 4
Blazor WebAssembly 5, 6

HttpClient.DeleteAsync method
using 193

HttpClient service
using 190

HyperText Markup Language
(HTML) 114

HyperText Transfer Protocol
Secure (HTTPS) 107

I
integrated development

environment (IDE) 3

J
JavaScript

about 82, 83
invoking, from .NET

synchronously 88, 89
JavaScript Object Notation (JSON) 107

JS Interop
about 83
InvokeAsync method 86-88
InvokeVoidAsync method 84-86

JSON helper methods
GetFromJsonAsync, using 191, 192
HttpClient.DeleteAsync

method, using 193
PostAsJsonAsync method, using 192
using 191

K
Kanban board

creating 179, 180
Kanban board project

classes, adding 175
creating 173, 175
Dropzone component, creating 176, 177
NewTask component, creating 181-183
NewTask component, using 183
overview 173
style sheet, adding 178, 179

L
lambda expression 62, 168
local storage

about 93, 94
methods 93

local storage service
about 94
creating 95, 96
ILocalStorageService

interface, adding 98
JavaScript, writing to access 97

244 Index

LocalStorageService class,
creating 98-100

reading from 102, 103
writing to 100-102

M
manifest file

about 107, 108
working with 108-110

manifest.json file
keys 109

Microsoft Visual Code 9
modal dialog project

component, adding to Razor
class library 77, 78

creating 66
CSS, adding 68-70
Dialog component, adding 67, 68
Dialog component, testing 70, 71
EventCallback parameters, adding 71-73
overview 65, 66
Razor class library, creating 75, 76
Razor class library, testing 76
RenderFragment parameters,

adding 73-75
starting with 66, 67

O
One Stop Designs (OSD) 77
OpenWeather One Call API

parameters 118
reference link 118
using 118, 120

P
PC

setting up 9
PostAsJsonAsync method

using 192
Progressive Web App (PWA)

about 6, 107
Blazor WebAssembly app,

creating 121, 122
creating 121
DailyForecast component,

adding 129, 130
Forecast class, adding 128
forecast, displaying 132
Geolocation API, using 124-127
HTTPS 107
installing 141, 142
JavaScript function, adding 122-124
logo, adding 133
manifest file 107, 108
manifest file, adding 133, 134
OpenWeather One Call API,

using 130, 131
service worker 108
service worker, adding 134-137
service worker, testing 137-140
uninstalling 142, 143

PutAsJsonAsync method
using 192

R
Razor 3
Razor components

about 18
life cycle 20
naming 19

Index 245

parameters 19
structure 20
using 18

Razor component structure
about 20
code block 22
directives 21
markup 22

Razor syntax
about 25
control structures 26
inline expressions 25

RenderFragment parameter 58-61
routable Razor components, examining

about 40
Counter component 41, 42
FetchData component 42-44
Index component 41

route constraints 24, 25
route parameters 23
routing

in Blazor WebAssembly 22

S
Secure Sockets Layer (SSL) 107
service lifetime, dependency injection (DI)

about 147
scoped 148
singleton 148
transient 148

service worker
about 108
updating 112
working with 111

service worker life cycle
about 111
activate 112

fetch 112
install 111

service worker, types
about 113
advanced caching 114
background sync 115
cache-first network 114
offline copy, of pages 114
offline copy, with offline pages 114
offline page 114

shared Razor components, examining
about 37
MainLayout component 37, 38
NavMenu component 39, 40
SurveyPrompt component 40

shopping cart project
about 150, 151
CartService class, creating 158, 159
CartService, injecting 160, 161
CartService, registering in

DI container 159
cart total, adding to all pages 161, 162
creating 149
ICartService interface, creating 157, 158
OnChange method, using 162, 163
overview 148
Product class, adding 151-153
Store page, adding 153-157
Store page, testing 157

SignalR 4
Silverlight 6
single-page application (SPA)

about 33
framework 2

SQL Server Express
installing 11-13

SQL Server Installer
URL 11

246 Index

T
TaskManager project

creating 194
hosted Blazor WebAssembly

app, examining 196
initiating 194-196
overview 194
solution, emptying 197
SQL Server, setting up 200-202
TaskItem API controller,

adding 198, 199
TaskItem class, adding 197
tasks, adding 207-209
tasks, completing 204-206
tasks, deleting 206, 207
tasks, displaying 202-204

U
Uniform Resource Locator (URL) 110

V
validation components

using 214, 215
Visual Studio 2019 106
Visual Studio Community Edition

installing 10
Visual Studio Installer

URL 10

W
WebAssembly

about 7
browser compatibility 8, 9
goals 8

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Blazor WebAssembly
	Benefits of using the Blazor framework
	.NET Framework
	SPA framework
	Razor syntax
	Awesome tooling

	Hosting models
	Blazor Server
	Blazor WebAssembly

	What is WebAssembly?
	WebAssembly goals
	WebAssembly support

	Setting up your PC
	Installing Visual Studio Community Edition
	Installing .NET 5.0
	Installing SQL Server Express

	Summary
	Questions
	Further reading

	Chapter 2: Building Your First Blazor WebAssembly Application
	Technical requirements
	Razor components
	Using components
	Parameters
	Naming components
	Component life cycle
	Component structure

	Routing in Blazor WebAssembly
	Route parameters
	Catch-all route parameters
	Route constraints

	Razor syntax
	Inline expressions
	Control structures

	Project overview
	Creating the Demo Blazor WebAssembly project
	Creating the Demo project
	Running the Demo project
	Examining the Demo project's structure
	Examining the shared Razor components
	Examining the routable Razor components
	Using a component
	Adding a parameter to a component
	Using a parameter with an attribute
	Adding a route parameter
	Using partial classes to separate markup from code

	Creating a custom Blazor WebAssembly project template
	Creating an empty Blazor project
	Creating a project template
	Updating a custom project template
	Using a custom project template

	Summary
	Questions
	Further reading

	Chapter 3: Building a Modal Dialog Using Templated Components
	Technical requirements
	RenderFragment parameters
	EventCallback parameters
	CSS isolation
	Enabling CSS isolation
	Supporting child components

	Project overview
	Creating the modal dialog project
	Getting started with the project
	Adding the Dialog component
	Adding a CSS
	Testing the Dialog component
	Adding EventCallback parameters
	Adding RenderFragment parameters
	Creating a Razor class library
	Testing the Razor class library
	Adding a component to the Razor class library

	Summary
	Questions
	Further reading

	Chapter 4: Building a Local Storage Service Using JavaScript Interoperability
(JS Interop)
	Technical requirements
	Why use JavaScript?
	Exploring JS interop
	InvokeVoidAsync
	InvokeAsync
	Invoking JavaScript from .NET synchronously
	Invoking .NET from JavaScript

	Understanding local storage
	Project overview
	Creating the local storage service
	Creating the local storage service project
	Writing JavaScript to access localStorage
	Adding the ILocalStorageService interface
	Creating the LocalStorageService class
	Writing to localStorage
	Reading from localStorage

	Summary
	Questions
	Further reading

	Chapter 5: Building a Weather App as a Progressive Web App (PWA)
	Technical requirements
	Understanding PWAs
	HTTPS
	Manifest files
	Service workers

	Working with manifest files
	Working with service workers
	Service worker life cycle
	Updating a service worker
	Types of service workers

	Using the CacheStorage API
	Using the Geolocation API
	Using the OpenWeather One Call API
	Project overview
	Creating a PWA
	Getting started with the project
	Adding a JavaScript function
	Using the Geolocation API
	Adding a Forecast class
	Adding a DailyForecast component
	Using the OpenWeather One Call API
	Displaying the forecast
	Adding the logo
	Adding a manifest file
	Adding a simple service worker
	Testing the service worker
	Installing the PWA
	Uninstalling the PWA

	Summary
	Questions
	Further reading

	Chapter 6: Building a Shopping Cart Using Application State
	Technical requirements
	Application state
	Understanding DI
	DI container
	Service lifetime

	Project overview
	Creating the shopping cart project
	Getting started with the project
	Adding the Product class
	Adding the Store page
	Demonstrating that application state is lost
	Creating the ICartService interface
	Creating the CartService class
	Registering CartService in the DI container
	Injecting CartService
	Adding the cart total to all of the pages
	Using the OnChange method

	Summary
	Questions
	Further reading

	Chapter 7: Building a Kanban Board Using Events
	Technical requirements
	Event handling
	Lambda expressions
	Preventing default actions

	Attribute splatting
	Arbitrary parameters
	Project overview
	Creating the Kanban board project
	Getting started with the project
	Adding the classes
	Creating the Dropzone component
	Adding a style sheet
	Creating the Kanban board
	Creating the NewTask component
	Using the NewTask component

	Summary
	Questions
	Further reading

	Chapter 8: Building a Task Manager Using
ASP.NET Web API
	Technical requirements
	Understanding hosted applications
	Client project
	Server project
	Shared project

	Using the HttpClient service
	Using JSON helper methods
	GetFromJsonAsync
	PostAsJsonAsync
	PutAsJsonAsync
	HttpClient.DeleteAsync

	Project overview
	Creating the TaskManager project
	Getting started with the project
	Examining the hosted Blazor WebAssembly app
	Emptying the solution
	Adding the TaskItem class
	Adding the TaskItem API controller
	Setting up SQL Server
	Displaying the tasks
	Completing the tasks
	Deleting the tasks
	Adding new tasks

	Summary
	Questions
	Further reading

	Chapter 9: Building an Expense Tracker Using the EditForm Component
	Technical requirements
	Overview of the EditForm component
	Using the built-in input components
	Using the validation components
	Project overview
	Creating the ExpenseTracker project
	Getting started with the project
	Removing the demo project
	Adding the classes
	Adding the API controllers
	Creating the SQL Server database
	Viewing the expenses
	Adding the ExpenseEdit component
	Adding the input components

	Summary
	Questions
	Further reading
	Why subscribe?

	About Packt
	Other Books You May Enjoy
	Index

